Journal of the American Chemical Society
Page 10 of 12
Covalent Organic Frameworks: Switching from Hole to Electron to
Ambipolar Conduction. Angew. Chem. Int. Ed. 2012, 51 (11), 2618-
622.
6) a) Doonan, C. J.; Tranchemontagne, D. J.; Glover, T. G.; Hunt, J.
2008, 47, 564; c) Du, P. W.; Knowles, K.; Eisenberg, R. A Homogene-
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
ous System for the Photogeneration of Hydrogen from Water Based
on a Platinum(II) Terpyridyl Acetylide Chromophore and a Molec-
ular Cobalt Catalyst. J. Am. Chem. Soc. 2008, 130, 12576-12577; d)
Lazarides, T.; McCormick, T.; Du, P. W.; Luo, G. G.; Lindley, B.; Eisen-
berg, R. Making Hydrogen from Water Using a Homogeneous Sys-
tem Without Noble Metals. J. Am. Chem. Soc. 2009, 131, 9192-9194;
e) Probst, B.; Rodenberg, A.; Guttentag, M.; Hamm, P.; Alberto, R.
Highly Stable Rhenium−Cobalt System for Photocatalytic H2 Pro-
duction: Unraveling the Performance-Limiting Steps. Inorg. Chem.
2010, 49, 6453-6460.
(14) a) Hawecker, J.; Lehn, J. M.; Ziessel, R. Efficient Homogenious
Photochemical Hydrogen Generation and Water Reduction Medi-
ated by Cobaloxime or Macrocyclic Cobalt Complexes. Nouv. J. Chim.
1983, 7, 271; b) McCormick, T. M.; Han, Z. J.; Weinberg, D. J.; Bren-
nessel, W. W.; Holland, P. L.; Eisenberg, R. Impact of Ligand Ex-
change in Hydrogen Production from Cobaloxime-Containing Pho-
tocatalytic Systems. Inorg. Chem. 2011, 50, 10660-10666.
(15) a) Han, Z.; McNamara, W. R.; Eum, M. S.; Holland, P. L.; Eisen-
berg, R. A Nickel Thiolate Catalyst for the Long-lived Photocatalytic
Production of Hydrogen in a Noble-metal-free System. Angew.
Chem. Int. Ed. 2012, 51 (7), 1667-70; b) Rao, H.; Yu, W.-Q.; Zheng,
H.-Q.; Bonin, J.; Fan, Y.-T.; Hou, H.-W. Highly Efficient Photocatalytic
Hydrogen Evolution from Nickel Quinolinethiolate Complexes un-
der Visible Light Irradiation. J. Power Sources 2016, 324, 253-260;
c) Das, A.; Han, Z.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R.
Nickel Complexes for Robust Light-Driven and Electrocatalytic Hy-
drogen Production from Water. ACS Catal. 2015, 5 (3), 1397-1406.
(16) a) Bouwman, E.; Reedijk, J. Structural and Functional Mod-
els related to the Nickel Hydrogenases. Coord. Chem. Rev. 2005,
249, 1555 –1581; b) Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.;
Nicolet, Y. Structure/Function Relationships of [NiFe]- and [FeFe]-
Hydrogenases. Chem. Rev. 2007, 107, 4273 – 4303; c) Tard, C.;
Pickett, C. J. Structural and Functional Analogues of the Active Sites
of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases. Chem. Rev. 2009,
109, 2245 – 2274; d) Carroll, M. E.; Barton, B. E.; Gray, D. L.; Mack,
A. E.; Rauchfuss, T. B. Active-Site Models for the Nickel–Iron Hydro-
genases: Effects of Ligands on Reactivity and Catalytic Properties.
Inorg. Chem. 2011, 50, 9554 – 9563.
(17) a) Bevk, D.; Marin, L.; Lutsen, L.; Vanderzande, D.; Maes, W.
Thiazolo[5,4-d]thiazoles – Promising Building Blocks in the Syn-
thesis of Semiconductors for Plastic Electronics. RSC Adv. 2013, 3
(29), 11418; b) Dessì, A.; Calamante, M.; Mordini, A.; Peruzzini, M.;
Sinicropi, A.; Basosi, R.; Fabrizi de Biani, F.; Taddei, M.; Colonna, D.;
di Carlo, A.; Reginato, G.; Zani, L. Thiazolo[5,4-d]thiazole-based Or-
ganic Sensitizers with Strong Visible Light Absorption for Trans-
parent, Efficient and Stable Dye-sensitized Solar Cells. RSC Adv.
2015, 5 (41), 32657-32668; c) Olgun, U.; Gülfen, M. Effects of Dif-
ferent Dopants on the Band Gap and Electrical Conductivity of the
Poly(phenylene-thiazolo[5,4-d]thiazole) Copolymer. RSC Adv.
2014, 4 (48), 25165-25171; d) Woodward, A. N.; Kolesar, J. M.; Hall,
S. R.; Saleh, N. A.; Jones, D. S.; Walter, M. G. Thiazolothiazole Fluoro-
phores Exhibiting Strong Fluorescence and Viologen-Like Reversi-
ble Electrochromism. J. Am. Chem. Soc. 2017, 139 (25), 8467-8473.
(18) Zhang, W.; Hong, J.; Zheng, J.; Huang, Z.; Zhou, J. S.; and Xu,
R. Nickel–Thiolate Complex Catalyst Assembled in One Step in Wa-
2
(
R.; Yaghi, O. M. Exceptional Ammonia Uptake by a Covalent Organic
Framework. Nat. Chem. 2010, 2 (3), 235-238; b) Oh, H.; Kalidindi,
S. B.; Um, Y.; Bureekaew, S.; Schmid, R.; Fischer, R. A.; Hirscher, M. A
Cryogenically Flexible Covalent Organic Framework for Efficient
Hydrogen Isotope Separation by Quantum Sieving.. Angew. Chem.
Int. Ed. 2013, 52 (50), 13219-13222; c) Biswal, B. P.; Chaudhari, H.
D.; Banerjee, R.; Kharul, U. K. Chemically Stable Covalent Organic
Framework (COF)-Polybenzimidazole Hybrid Membranes: En-
hanced Gas Separation through Pore Modulation. Chem. Eur. J.
2016, 22 (14), 4695-4699; d) Ji, W.; Xiao, L.; Ling, Y.; Ching, C.;
Matsumoto, M.; Bisbey, R. P.; Helbling, D. E.; Dichtel, W. R. Removal
of GenX and Perfluorinated Alkyl Substances from Water by Amine-
Functionalized Covalent Organic Frameworks. J. Am. Chem. Soc.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
2
018, 140 (40), 12677-12681; e) Sun, Q.; Aguila, B.; Earl, L. D.; Ab-
ney, C. W.; Wojtas, L.; Thallapally, P. K.; Ma, S. Covalent Organic
Frameworks as a Decorating Platform for Utilization and Affinity
Enhancement of Chelating Sites for Radionuclide Sequestration.
Adv. Mater. 2018, 30 (20), e1705479.
(7) a) Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur,
G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chemical Sensing
in Two Dimensional Porous Covalent Organic Nanosheets. Chem.
Sci. 2015, 6 (7), 3931-3939; b) Gao, Q.; Li, X.; Ning, G. H.; Leng, K.;
Tian, B.; Liu, C.; Tang, W.; Xu, H. S.; Loh, K. P. Highly Photolumines-
cent Two-Dimensional Imine-based Covalent Organic Frameworks
for Chemical Sensing. Chem. Commun. 2018, 54 (19), 2349-2352.
(8) a) Keller, N.; Bessinger, D.; Reuter, S.; Calik, M.; Ascherl, L.;
Hanusch, F. C.; Auras, F.; Bein, T. Oligothiophene-Bridged Conju-
gated Covalent Organic Frameworks. J. Am. Chem. Soc. 2017, 139
(
24), 8194-8199; b) Dogru, M.; Bein, T. On the Road towards Elec-
troactive Covalent Organic Frameworks. Chem. Commun. 2014, 50
42), 5531-46.
9) Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.;
(
(
Wang, W. Construction of Covalent Organic Framework for Cataly-
sis: Pd/COF-LZU1 in Suzuki–Miyaura Coupling Reaction. J. Am.
Chem. Soc. 2011, 133 (49), 19816-19822.
(10) a) Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. A Hydra-
zone-based Covalent Organic Framework for Photocatalytic Hydro-
gen Production. Chem. Sci. 2014, 5 (7), 2789-2793; b) Vyas, V. S.;
Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.;
Lotsch, B. V. A Tunable Azine Covalent Organic Framework Plat-
form for Visible Light-induced Hydrogen Generation. Nat. Commun.
2
015, 6, 8508; c) Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn,
T.; Schwarze, M.; Schomaecker, R.; Thomas, A.; Schmidt, J. Diacety-
lene Functionalized Covalent Organic Framework (COF) for Photo-
catalytic Hydrogen Generation. J. Am. Chem. Soc., 2018, 140 (4),
1423–1427; d) Wang, X.; Chen, L.; Chong, S. Y.; Little, M. A.; Wu, Y.;
Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.;
Cooper, A. I. Sulfone-containing Covalent Organic Frameworks for
Photocatalytic Hydrogen Evolution from Water. Nat. Chem. 2018,
10, 1180–1189; e) Banerjee, T. and Lotsch, B. V. The Wetter the Bet-
ter. Nat. Chem., 2018, 10, 1175–1177; f) Haase, F.; Banerjee, T.;
Savasci, G.; Ochsenfeld, C.; Lotsch, B. V. Structure-property-activity
Relationships in a Pyridine Containing Azine-linked Covalent Or-
ganic Framework for Photocatalytic Hydrogen Evolution. Faraday
Discuss. 2017, 201, 247-264.
(11) Barber, J.; Tran, P. D. From Natural to Artificial Photosynthe-
sis. J. R. Soc. Interface 2013, 10 (81), 20120984.
ter for Solar H
20683.
2
Production. J. Am. Chem. Soc., 2011, 133, 20680–
(19) Zhu, Y.; Zhang, W. Reversible Tuning of Pore Size and CO2
Adsorption in Azobenzene Functionalized Porous Organic Poly-
mers. Chem. Sci. 2014, 5, 4957-4961.
(12) Banerjee, T.; Haase, F.; Savasci, G.; Gottschling, K.; Ochsen-
(20) a) Kussmann, J.; Ochsenfeld, C. Pre-selective screening for
matrix elements in linear-scaling exact exchange calculations. J
Chem Phys. 2013, 138, 134114; b) Kussmann, J.; Ochsenfeld, C. Pre-
selective screening for linear-scaling exact exchange-gradient cal-
culations for graphics processing units and general strong-scaling
massively parallel calculations. J. Chem. Theory Comput. 2015, 11,
918–922; c) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Elec-
tronic structure calculations on workstation computers: The pro-
gram system turbomole. Chem. Phys. Lett. 1989, 162, 165–169.; d)
TURBOMOLE V7.3 2018, a development of University of Karlsruhe
feld, C.; Lotsch, B. V. Single-Site Photocatalytic H Evolution from
2
Covalent Organic Frameworks with Molecular Cobaloxime Co-Cat-
alysts. J. Am. Chem. Soc., 2017, 139 (45), 16228–16234.
(13) a) Zhang, P.; Wang, M.; Dong, J. F.; Li, X. Q.; Wang, F.; Wu, L.
Z.; Sun, L. C. Photocatalytic Hydrogen Production from Water by
Noble-Metal-Free Molecular Catalyst Systems Containing Rose
Bengal and the Cobaloximes of BFx-Bridged Oxime Ligands. J. Phys.
Chem. C 2010, 114, 15868-15874; b) Fihri, A.; Artero, V.; Razavet,
M.; Baffert, C.; Leibl, W.; Fontecave, M. Cobaloxime-based Photo-
catalytic Devices for Hydrogen Production. Angew. Chem., Int. Ed.
ACS Paragon Plus Environment