Communication
ChemComm
Financial support from the National Natural Science Foun-
dation of China (51502320, 21602232, U1662102), the Natural
Science Foundation of Shanxi Province (201701D221057, 20160
1D021060), the Shanxi Scholarship Council of China and the DNL
Cooperation Fund (DNL180401) is gratefully acknowledged.
Scheme 1 TON/TOF experiments. (1) Reaction conditions: 1a (11.6 g,
0.2 mol), 3 h; results: 2a, 21 g, 499% yield, TON = 8666, TOF: 2889 hÀ1
.
(2) Reaction conditions: 1a (23.2 g, 0.4 mol), 9 h; results: 2a, 36.2 g, 89%
yield, TON = 15 380, TOF: 1 710 hÀ1
.
Conflicts of interest
There are no conflicts to declare.
Notes and references
¨
¨
¨
1 (a) B. Schaffner, F. Schaffner, S. P. Verevkin and A. Borner, Chem.
´
Rev., 2010, 110, 4554–4581; (b) C. Martın, G. Fiorani and A. W. Kleij,
ACS Catal., 2015, 5, 1353–1370; (c) X.-D. Lang and L.-N. He, Chem.
Rec., 2016, 16, 1337–1352.
2 (a) M. Cokoja, M. E. Wilhelm, M. H. Anthofer, W. A. Herrmann and F. E.
Ku¨hn, ChemSusChem, 2015, 8, 2436–2454; (b) Q. He, J. W. O’Brien,
K. A. Kitselman, L. E. Tompkins, G. C. T. Curtis and F. M. Kerton, Catal.
Sci. Technol., 2014, 4, 1513–1528.
3 V. B. Saptal and B. M. Bhanage, Curr. Opin. Green Sustainable Chem.,
2017, 3, 1–10.
Scheme 2 Plausible atomic [ZnN] based reaction mechanism.
4 H. Yasuda, L.-N. He, T. Sakakura and C. Hu, J. Catal., 2005, 233,
119–122.
5 (a) H. He, Q. Sun, W. Gao, J. A. Perman, F. Sun, G. Zhu, B. Aguila,
K. Forrest, B. Space and S. Ma, Angew. Chem., Int. Ed., 2018, 57,
4657–4662; (b) Z. F. Dai, Q. Sun, X. L. Liu, C. Q. Bian, Q. M. Wu,
S. X. Pan, L. Wang, X. J. Meng, F. Deng and F. S. Xiao, J. Catal., 2016,
338, 202–209; (c) J. Zhou, Y. Dou, A. Zhou, L. Shu, Y. Chen and J.-R.
Li, ACS Energy Lett., 2018, 3, 1655.
6 (a) Z. Z. Yang, Y. N. Zhao, L. N. He, J. Gao and Z. S. Yin, Green Chem.,
2012, 14, 519–527; (b) X. Wang, Y. Zhou, Z. Guo, G. Chen, J. Li,
Y. Shi, Y. Liu and J. Wang, Chem. Sci., 2015, 6, 6916–6924.
7 (a) V. D’Elia, H. Dong, A. J. Rossini, C. M. Widdifield, S. V. C. Vummaleti,
Y. Minenkov, A. Poater, E. Abou-Hamad, J. D. A. Pelletier, L. Cavallo,
L. Emsley and J.-M. Basset, J. Am. Chem. Soc., 2015, 137, 7728–7739;
(b) X.-B. Lu, H. Wang and R. He, J. Mol. Catal. A: Chem., 2002, 186, 33–42;
(c) Q.-N. Zhao, Q.-W. Song, P. Liu, Q. X. Zhang, J.-H. Gao and K. Zhang,
Chin. J. Chem., 2018, 36, 187–193.
8 (a) D. H. Lan, F. M. Yang, S. L. Luo, C. T. Au and S. F. Yin, Carbon,
2014, 73, 351–360; (b) Z. F. Dai, Q. Sun, X. L. Liu, L. P. Guo, J. X. Li,
S. X. Pan, C. Q. Bian, L. Wang, X. Hu, X. J. Meng, L. H. Zhao and F. S.
Xiao, ChemSusChem, 2017, 10, 1186–1192; (c) V. B. Saptal, T. Sasaki,
K. Harada, D. Nishio-Hamane and B. M. Bhanage, ChemSusChem,
2016, 9, 644–650.
9 J. K. Nørskov, F. Studt, F. Abild-Pedersen and T. BligaardJens, Funda-
mental Concepts in Heterogeneous Catalysis, John Wiley & Sons, 2014.
10 (a) H. Wei, X. Liu, A. Wang, L. Zhang, B. Qiao, X. Yang, Y. Huang,
S. Miao, J. Liu and T. Zhang, Nat. Commun., 2014, 5, 5634;
(b) C. Wang, H. Zhang, Y. Zhang, M. Cheng, H. Zhao, J. Wang and
J. Wang, Chem. Mater., 2017, 29, 9915–9922; (c) B. Qiao, A. Wang,
X. Yang, L. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li and T. Zhang, Nat.
Chem., 2011, 3, 634–641; (d) X. Guo, G. Fang, G. Li, H. Ma, H. Fan,
L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li,
L. Sun, Z. Tang, X. Pan and X. Bao, Science, 2014, 344, 616–619;
(e) A. Li, C. Wang, H. Zhang, Z. Zhao, J. Wang, M. Cheng, H. Zhao,
J. Wang, M. Wu and J. Wang, Electrochim. Acta, 2018, 276, 153–161.
NG–aZnN was further examined (Fig. S11, ESI†); the resultant
decreased PC yield could be attributed to surface partial Zn
aggregation after the reaction, as shown in Fig. S12 (ESI†).
On the basis of previous reports and experimental investigation
in this work, a tentative mechanism for the NG–aZnN-catalyzed
cycloaddition reaction of CO2 and epoxides could be plotted. It
should be noted that for simplicity, a [ZnN4] unit is schematically
shown in Scheme 2. Initially, the functional site, i.e. [ZnN4] in
NG–aZnN, interacts closely with the epoxide to polarize the C–O
bond of the epoxide. Subsequently, the activated epoxide con-
currently undertakes a ring-opening step upon nucleophilic attack
by the bromide anion from the less-sterically-hindered carbon atom
and gives an intermediate A (step 1). Next, the active site-stabilized
alkoxide intermediate A is formed. Then, nucleophilic attack of the
intermediate A at the CO2 molecule generates the alkyl carbonate
anion B (step 2). Finally, cyclic carbonate is produced via ring
closing with regeneration of the catalytic species (step 3). In this
process, the activation of epoxides and stabilization of intermediate
were significantly enhanced via the functional site [ZnN4] and
reactants’ intermolecular interactions, leading to the excellent
catalytic performances.
In summary, a novel single zinc atom catalyst was prepared
through a facile pyrolysis method with an oleic zinc precursor.
The atomic zinc was coordinated with doped nitrogen atoms and
supported on a graphene sheet. This Zn-based SAC has demon- 11 (a) H. B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang,
X. Huang, H.-Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen,
Y. Huang, H. M. Chen, C. M. Li, T. Zhang and B. Liu, Nat. Energy,
2018, 3, 140–147; (b) F. Yang, P. Song, X. Liu, B. Mei, W. Xing,
strated high efficiency for the synthesis of cyclic carbonates from
epoxides and CO2, with superior catalytic species for CO2 con-
version with a TON up to 8666 (TOF: 2889 hÀ1). The unique and
carefully characterized ZnN3.76Æ0.2 units were revealed as the
dominant catalytic sites in the chemical transformation. We
believe that our strategy can be further developed into a general
approach to fabricate inexpensive heterogeneous catalysts for
upgrading CO2 through its incorporation into valuable chemicals
with synergistic activation and catalysis.
Z. Jiang, L. Gu and W. Xu, Angew. Chem., Int. Ed., 2018, 130, 1–6.
12 (a) H. Zhang, J. Wei, J. Dong, G. Liu, L. Shi, P. An, G. Zhao, J. Kong,
X. Wang, X. Meng, J. Zhang and J. Ye, Angew. Chem., Int. Ed., 2016,
55, 14310–14314; (b) S. Kumar, A. Baruah, S. Tonda, B. Kumar,
V. Shanker and B. Sreedhar, Nanoscale, 2014, 6, 4830–4842.
13 X.-B. Lu and D. J. Darensbourg, Chem. Soc. Rev., 2012, 41, 1462–1484.
14 (a) Z. Huang, F. Li, B. Chen and G. Yuan, Catal. Sci. Technol., 2016, 6,
2942–2948; (b) J. Xu, F. Wu, Q. Jiang, J.-K. Shang and Y.-X. Li, J. Mol.
Catal. A: Chem., 2015, 403, 77–83.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019