Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Substituent electrophilicities
O
Theoretical calculations
All theoretical calculations employed the Gaussian03 package.[12]
Optimizations were performed with the hybrid B3LYP/6-31 G(d)
method. The chemical potential m and hardness ꢀ of each molecule
were calculated from Eqns (3) and (4), where EHOMO and ELUMO
are the HOMO and LUMO energies, respectively, employing
Koopmann’s approximation.[2]
Me
O
Me
O
2
5
N
N
1
3
4
6
m ¼ ðEHOMO þ ELUMOÞ=2
ꢀ ¼ ELUMO ꢀ EHOMO
(2)
(3)
X
The global electrophilicity of each molecule was calculated with
the aid of Eqn (4)[1]
1
Scheme 1. Structure of substituted 5-benzylidene-N,N’-dimethylbarbituric
derivatives 1, with the numbering of the barbituric ring atoms.
o ¼ m2=2ꢀ
(4)
5-(4-bromobenzylidene)-N,N’-dimethylbarbituric acid (1c), m.p.
172–175 ꢂC; 5-benzylidene-N,N’-dimethylbarbituric acid (1 d),
m.p. 156 ꢂC, lit.[7], 157–159 ꢂC; 5-(3-methoxybenzylidene)-N,N’-
dimethylbarbituric acid (1e), m.p. 135-136 ꢂC; 5-(4-methylthio-
benzylidene)-N,N’-dimethylbarbituric acid (1f), m.p. 156–159 ꢂC;
5-(4-methoxybenzylidene)-N,N’-dimethylbarbituric acid (1 g), m.p.
144–145 ꢂC, lit.[7], 143–145 ꢂC; 5-(4-dimethylaminobenzylidene)-N,
N’-dimethylbarbituric acid (1 h), m.p. 223–225 ꢂC, lit.[7], m.p.
224–226 ꢂC. 1H and 13 C NMR data, in CDCl3, of all derivatives
are given in Table 1.
Results and Discussion
1
The H and 13 C NMR spectra of compounds 1a–1 h are given in
Table 1.
In all proton spectra, the N-CH3 signals appeared as two
conspicuous singlets in the range d = 3.30–3.50 ppm. The 13 C
carbonyl signals of all barbituric derivatives appeared in the
range d = 151–152 (C-2) and d = 159–165 ppm (C-4 and C-6).
Assignments were based on the proximity of the benzylidene
group to the center under consideration. The benzylidene group
Table 1. 1H- and 13 C-NMR spectra of compounds 1a–1 h in CDCl3
Cpd (X)
1H-NMR/d
13 C-NMR/d
1a (4-NO2)
3.36 (s, 3 H, 3-NCH3); 3.45 (s, 3 H, 1-NCH3); 7.95 (d, 2 H,
J = 8.5 Hz, ArH meta to NO2); 8.29 (d, 2 H,
28.67(3-NCH3); 29.34 (1-NCH3); 120.87(C-5); 123.26 (2ArCH);
132.30(2ArCH); 139.21 (ArC); 149.05 (ArC-NO2); 150.99
(NCON); 155.45(CH-olef); 159.84 (C-4); 161.54 (C-6)
28.71(3-NCH3); 29.34 (1-NCH3); 120.27 (C-5); 126.33 (ArCH);
126.90 (ArCH); 129.26 (ArCH); 134.34(ArC); 137.81(ArCH);
147.98 (ArC-NO2); 151.03 (NCON); 155.47(CH-olef);
160.02 (C-4); 161.70 (C-6)
J = 8.5 Hz, ArH ortho to NO2); 8.58 (s, 1 H, C = CH)
3.37 (s, 3H, 3-NCH3); 3.44 (s, 3H, 1-NCH3); 7.64
(t, 1H, J = 8.0 Hz, ArH meta to NO2); 8.17 (m, 1H, ArH
ortho to NO2); 8.34 (m, 1H, ArH para to NO2); 8.56
(s, 1H, CH = C); 8.83 (m, 1H, ArH ortho to NO2)
3.36 (s, 3H, 3-NCH3); 3.41 (s, 3H, 1-NCH3); 7.59
(d, 2H, J = 10 Hz, ArH ortho to Br); 7.93
1b (3-NO2)
1c (4-Br)
1 d (H)
28.58 (3-NCH3); 29.24 (1-NCH3); 118.04 (C-5); 128.12 (ArC);
131.52 (ArC); 131.70 (2ArCH); 134.91 (2ArCH); 151.21
(NCON); 157.62 (CH olef); 160.42 (C-4); 162.36 (C-6).
28.56 (3-NCH3); 29.22 (1-NCH3); 117.66 (C-5); 128.36
(2ArCH); 132.79(ArC); 133.04 (ArCH); 133.54 (2ArCH);
151.38(NCON); 159.44(CH-olef); 160.46 (C-4); 162.61 (C-6)
28.61(3-NCH3); 29.25 (1-NCH3); 55.56 (OCH3); 117.76 (ArCH)
and (C-5); 119.53 (ArCH); 126.73 (ArCH); 129.31 (ArCH);
133.92 (ArC); 151.37 (NCON); 159.29 (ArC-OCH3) and
(CH-olef); 160.43 (C-4); 162.66 (C-6)
(d, 2H, J = 10 Hz, ArH meta to Br); 8.47 (s, 1H, CH = C)
3.35 (s, 3 H, 3-NCH3); 3.39 (s, 3 H, 1-NCH3); 7.44
(t, 1H, J = 7.5 Hz, ArH); 7.50 (q, 2H, J = 7.5 Hz, ArH);
8.03 (d, 2H, J = 7.5 Hz); 8.54 (s, 1H, C = CH)
1e (3-OMe)
3.37 (s, 3H, 3-NCH3); 3.42 (s, 3H, 1-NCH3); 3.86 (s, 3H, OCH3);
7.08 (m, 1H, ArH ortho to OCH3); 7.37 (t, 1H, J = 7.9 Hz,
ArH meta to OCH3); 7.57 (m, 1H, ArH para to OCH3);
7.56 (m, 1H, ArH ortho to OCH3); 8.17 (s, 1H, CH = C)
2.54 (s, 3H, SCH3); 3.38 (s, 3H, 3-NCH3); 3.41 (s, 3H, 1-NCH3);
7.27 (d, 2H, J = 8.7 Hz, ArH ortho to SCH3); 8.15
(d, 2H, J = 8.5 Hz, ArH meta to SCH3); 8.49 (s, 1H, CH = C)
3.39 (s, 3 H, 3-NCH3); 3.41 (s, 3H, 1-NCH3); 3.91 (s, 3H, OCH3),
6.98 (d, 2H, J = 8 Hz, ArH ortho to OMe); 8.32 (d, 2H,
J = 8 Hz, ArH meta to OMe); 8.52 (s, 1H, C = CH)
1f (4-SMe)
14.71 (SCH3); 28.55(3-NCH3); 29.22 (1-NCH3); 115.85 (C-5); 124.61
(2ArCH); 128.83(C-Ar); 135.08 (2 ArCH); 147.78 (ArC-S);
151.44 (NCON); 158.67 (CH-olef); 160.88 (C-4); 162.98 (C-6).
28.50(3-NCH3); 29.18 (1-NCH3); 55.75 (OCH3); 114.10 (2 ArCH);
114.42(C-5); 125.26(ArC); 138.08 (2ArCH); 151.55 (NCON);
159.02(CH-olef); 161.11 (C-4); 163.26 (C-6); 164.43 (ArC-OCH3)
1 g (4-OMe)
1 h (4-NMe2)
3.13 (s, 6H, N(CH3)2); 3.37 (s, 3H, 3-NCH3); 3.38 (s, 3H, 1-NCH3); 28.33(3-NCH3); 29.00 (1-NCH3); 40.18 (N(CH3)2); 109.76(C-5); 111.14
6.68 (d, 2H, J = 8 Hz, ArH ortho to NMe2); 8.39 (d, 2H,
J = 8 Hz, ArH meta to NMe2); 8.41 (s, 1H, C = CH)
(2ArCH); 121.18(C-Ar); 139.64 (2ArCH); 151.94(NCON);
154.52 (ArC-NMe2); 158.87(CH-olef); 161.74 (C-4); 164.13 (C-6)
Magn. Reson. Chem. 2012, 50, 266–270
Copyright © 2012 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/mrc