Page 5 of 6
Journal of the American Chemical Society
(9.) Huang, H.; Sun, B.; Huang, Y.; Niu, J., Radical Cascade-Triggered
Controlled Ring-Opening Polymerization of Macrocyclic Monomers. J.
Am. Chem. Soc. 2018, 140, 10402-10406.
Chemistry in Polymer Synthesis. J. Am. Chem. Soc. 2011, 133, 1678-1681;
(f) Mavila, S.; Worrell, B. T.; Culver, H. R.; Goldman, T. M.; Wang, C.;
Lim, C.-H.; Domaille, D. W.; Pattanayak, S.; McBride, M. K.; Musgrave,
C. B.; Bowman, C. N., Dynamic and Responsive DNA-like Polymers. J.
Am. Chem. Soc. 2018, 140, 13594-13598; (g) Celasun, S.; Remmler, D.;
Schwaar, T.; Weller, M. G.; Du Prez, F.; Börner, H. G., Digging into the
Sequential Space of Thiolactone Precision Polymers: A Combinatorial
Strategy to Identify Functional Domains. Angew. Chem., Int. Ed. 2018, 0, ;
(h) Wilkins, L. E.; Badi, N.; Du Prez, F.; Gibson, M. I., Double-Modified
Glycopolymers from Thiolactones to Modulate Lectin Selectivity and Af-
finity. ACS Macro Lett. 2018, 7, 1498-1502.
1
2
3
4
5
6
7
(10.) (a) Crich, D.; Quintero, L., Radical chemistry associated with the
thiocarbonyl group. Chem. Rev. 1989, 89, 1413-1432; (b) Dénès, F.;
Pichowicz, M.; Povie, G.; Renaud, P., Thiyl Radicals in Organic Synthesis.
Chem. Rev. 2014, 114, 2587-2693.
(11.) (a) Barton, D. H. R.; McCombie, S. W., A new method for the de-
oxygenation of secondary alcohols. J. Chem. Soc., Perkin Trans. 1 1975,
1574-1585; (b) Barton, D. H. R.; Crich, D.; Motherwell, W. B., New and
improved methods for the radical decarboxylation of acids. J. Chem. Soc.,
Chem. Comm. 1983, 939-941.
8
9
(22.) (a) Perrier, S., 50th Anniversary Perspective: RAFT Polymeriza-
tion—A User Guide. Macromolecules 2017, 50, 7433-7447; (b) Treat, N.
J.; Sprafke, H.; Kramer, J. W.; Clark, P. G.; Barton, B. E.; Read de Alaniz,
J.; Fors, B. P.; Hawker, C. J., Metal-Free Atom Transfer Radical Polymer-
ization. J. Am. Chem. Soc. 2014, 136, 16096-16101; (c) Hill, M. R.; Car-
mean, R. N.; Sumerlin, B. S., Expanding the Scope of RAFT Polymeriza-
tion: Recent Advances and New Horizons. Macromolecules 2015, 48,
5459-5469; (d) Hawker, C. J.; Bosman, A. W.; Harth, E., New Polymer
Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chem.
Rev. 2001, 101, 3661-3688; (e) Anastasaki, A.; Nikolaou, V.; Nurumbetov,
G.; Wilson, P.; Kempe, K.; Quinn, J. F.; Davis, T. P.; Whittaker, M. R.;
Haddleton, D. M., Cu(0)-Mediated Living Radical Polymerization: A Ver-
satile Tool for Materials Synthesis. Chem. Rev. 2016, 116, 835-877; (f)
Grubbs, R. B., Nitroxide-Mediated Radical Polymerization: Limitations
and Versatility. Polym. Rev. 2011, 51, 104-137; (g) Matyjaszewski, K.;
Tsarevsky, N. V., Macromolecular Engineering by Atom Transfer Radical
Polymerization. J. Am. Chem. Soc. 2014, 136, 6513-6533; (h) Ouchi, M.;
Sawamoto, M., 50th Anniversary Perspective: Metal-Catalyzed Living
Radical Polymerization: Discovery and Perspective. Macromolecules 2017,
50, 2603-2614.
(23.) Brandmeier, V.; Feigel, M., A macrocycle containing two biphenyl
and two alanine subunits, synthesis and conformation in solution. Tetrahe-
dron 1989, 45, 1365-1376.
(24.) (a) Ozturk, T.; Ertas, E.; Mert, O., Use of Lawesson's Reagent in
Organic Syntheses. Chem. Rev. 2007, 107, 5210-5278; (b) Scheibye, S.;
Kristensen, J.; Lawesson, S. O., Studies on organophosphorus com-
pounds—XXVII: Synthesis of thiono-, thiolo- and dithiolactones. Tetrahe-
dron 1979, 35, 1339-1343.
(12.) (a) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le,
T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.;
Rizzardo, E.; Thang, S. H., Living Free-Radical Polymerization by Reversi-
ble Addition−Fragmentation Chain Transfer:ꢀ The RAFT Process. Macro-
molecules 1998, 31, 5559-5562; (b) Moad, G.; Rizzardo, E.; Thang, S. H.,
Radical addition–fragmentation chemistry in polymer synthesis. Polymer
2008, 49, 1079-1131.
(13.) Latelli, N.; Ouddai, N.; Arotçaréna, M.; Chaumont, P.; Mignon, P.;
Chermette, H., Mechanism of addition-fragmentation reaction of thiocar-
bonyls compounds in free radical polymerization. A DFT study. Comput.
Theor. Chem. 2014, 1027, 39-45.
(14.) Takashi, O. K., Ri Production of sulfur-containing polymer. 1999.
(15.) Banerjee, S.; Patil, Y.; Gimello, O.; Ameduri, B., Well-defined
multiblock poly(vinylidene fluoride) and block copolymers thereof: a miss-
ing piece of the architecture puzzle. Chem. Comm. 2017, 53, 10910-10913.
(16.) Meijs, G. F.; Rizzardo, E.; Le, T. P. T.; Chen, Y.-C., Influence of
thionoesters on the degree of polymerization of styrene, methyl acrylate,
methyl methacrylate and vinyl acetate. Macromol. Chem. 1992, 193, 369-
378.
(17.) Aksakal, S.; Becer, R. C., Poly(thioacrylate)s: expanding the mon-
omer toolbox of functional polymers. Polym. Chem. 2016, 7, 7011-7018.
(18.) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B., Synthesis
of proteins by native chemical ligation. Science 1994, 266, 776.
(19.) Fukuyama, T.; Lin, S. C.; Li, L., Facile reduction of ethyl thiol es-
ters to aldehydes: application to a total synthesis of (+)-neothramycin A
methyl ether. J. Am. Chem. Soc. 1990, 112, 7050-7051.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(20.) Liebeskind, L. S.; Srogl, J., Thiol Ester−Boronic Acid Coupling. A
Mechanistically Unprecedented and General Ketone Synthesis. J. Am.
Chem. Soc. 2000, 122, 11260-11261.
(25.) Mavila, S.; Worrell, B. T.; Culver, H. R.; Goldman, T. M.; Wang,
C.; Lim, C.-H.; Domaille, D. W.; Pattanayak, S.; McBride, M. K.; Mus-
grave, C. B.; Bowman, C. N., Dynamic and Responsive DNA-like Poly-
mers. J. Am. Chem. Soc. 2018,
(21.) (a) Konieczynska, M. D.; Villa-Camacho, J. C.; Ghobril, C.; Perez-
Viloria, M.; Tevis, K. M.; Blessing, W. A.; Nazarian, A.; Rodriguez, E. K.;
Grinstaff, M. W., On-Demand Dissolution of a Dendritic Hydrogel-based
Dressing for Second-Degree Burn Wounds through Thiol–Thioester Ex-
change Reaction. Angew. Chem., Int. Ed. 2016, 55, 9984-9987; (b) Ghobril,
C.; Charoen, K.; Rodriguez, E. K.; Nazarian, A.; Grinstaff, M. W., A Den-
dritic Thioester Hydrogel Based on Thiol–Thioester Exchange as a Dissolv-
able Sealant System for Wound Closure. Angew. Chem., Int. Ed. 2013, 52,
14070-14074; (c) Worrell, B. T.; McBride, M. K.; Lyon, G. B.; Cox, L. M.;
Wang, C.; Mavila, S.; Lim, C.-H.; Coley, H. M.; Musgrave, C. B.; Ding,
Y.; Bowman, C. N., Bistable and photoswitchable states of matter. Nat.
Comm. 2018, 9, 2804; (d) Wang, C.; Mavila, S.; Worrell, B. T.; Xi, W.;
Goldman, T. M.; Bowman, C. N., Productive Exchange of Thiols and Thi-
oesters to Form Dynamic Polythioester-Based Polymers. ACS Macro Lett.
2018, 1312-1316; (e) Espeel, P.; Goethals, F.; Du Prez, F. E., One-Pot Mul-
tistep Reactions Based on Thiolactones: Extending the Realm of Thiol−Ene
(26.) (a) Srichan, S.; Mutlu, H.; Badi, N.; Lutz, J.-F., Precision
PEGylated Polymers Obtained by Sequence-Controlled Copolymerization
and Postpolymerization Modification. Angew. Chem., Int. Ed. 2014, 53,
9231-9235; (b) Fierens, S. K.; Telitel, S.; Van Steenberge, P. H. M.;
Reyniers, M.-F.; Marin, G. B.; Lutz, J.-F.; D’hooge, D. R., Model-Based
Design To Push the Boundaries of Sequence Control. Macromolecules
2016, 49, 9336-9344; (c) Gody, G.; Zetterlund, P. B.; Perrier, S.; Harrisson,
S., The limits of precision monomer placement in chain growth polymeri-
zation. Nat. Comm. 2016, 7, 10514; (d) Anastasaki, A.; Oschmann, B.; Wil-
lenbacher, J.; Melker, A.; Van Son, M. H. C.; Truong, N. P.; Schulze, M.
W.; Discekici, E. H.; McGrath, A. J.; Davis, T. P.; Bates, C. M.; Hawker,
C. J., One-Pot Synthesis of ABCDE Multiblock Copolymers with Hydro-
phobic, Hydrophilic, and Semi-Fluorinated Segments. Angew. Chem., Int.
Ed. 2017, 56, 14483-14487.
ACS Paragon Plus Environment