T. Borkowski et al. / Journal of Catalysis 282 (2011) 270–277
[12] (a) M. Cai, Q. Xu, Y. Huang, J. Mol. Catal. A: Chem. 271 (2007) 93;
277
were obtained using conventional heating as well as microwave
energy. The catalyst showed very good recyclability, demonstrated
by the performance of eight successive runs with only a slight de-
crease in catalytic activity in the last one. Another advantage of the
catalyst under study is its high activity at low temperatures, 40 or
60 °C. Excellent activity was demonstrated by the achievement of a
high yield of the cross-coupling product and by high TOF values,
(b) S. Paul, J.H. Clark, J. Mol. Catal. A: Chem. 215 (2004) 107;
(c) Q. Yang, S. Ma, J. Li, F. Xiao, H. Xiong, Chem. Commun. (2008) 2495;
(d) J.D. Webb, S. MacQuarrie, K. McEleney, C.M. Crudden, J. Catal. 251 (2007)
97.
[13] (a) S. Chandrasekhar, Ch. Narsihmulu, S. Shameem Sultana, N. Ramakrishna
Reddy, Org. Lett. 4 (2002) 4399;
(b) A. Corma, H. Garcia, A. Leyva, J. Catal. 240 (2006) 87;
(c) I.P. Beletskaya, A.N. Kashin, A.E. Litvinov, V.S. Tyurin, P.M. Valetsky, G. Van
Koten, Organometallics 25 (2006) 154;
ca. 25,000 hÀ1
.
(d) P. Ribiere, V. Declerck, Y. Nedellec, Tetrahedron 62 (2006) 10456;
The studies of the catalyst separated after the Suzuki–Miyaura
reaction showed the presence of Pd(0) nanoparticles bonded to
the polymer. During palladium reduction, some of the polymer
was lost (polymer P1 without palladium is liquid) and the palla-
dium content increased. The relatively mild and slow reduction
in palladium took place under the Suzuki–Miyaura conditions,
and consequently, palladium content increased from 7% to 12%.
In contrast, application of a strong reducing agent, hydrazine, re-
sulted in a ca. 40% loss of mass, and the final palladium content in-
creased to 35%. When more hydrazine was used in methanol,
agglomeration of nanoparticles started to occur.
´
(e) A.M. Trzeciak, E. Mieczynska, J.J. Ziółkowski, W. Bukowski, A. Bukowska, J.
Noworól, J. Okal, New J. Chem. 32 (2008) 1124;
(f) L. Zhang, M. Xue, Y. Cui, J. Appl. Polym. Sci. 115 (2010) 2523;
(g) M. Bakherad, A. Keivanloo, B. Bahramian, S. Mihanparast, Tetrahedron Lett.
50 (2009) 6418;
(h) M.I. Burguete, E. Garcia-Verdugo, I. Garcia-Villar, F. Gelat, P. Licence, S.V.
Luis, V. Sans, J. Catal. 269 (2010) 150;
(i) C. Diebold, S. Schweizer, J.-M. Becht, C. Le Drian, Org. Biomol. Chem. 8
(2010) 4834;
ˇ
ˇ
(j) J. Demel, Sujandi, S.-E. Park, J. Cejka, P. Štepnicka, J. Mol. Catal. A: Chem.
302 (2009) 28;
(k) J.-W. Byun, Y.-S. Lee, Tetrahedron Lett. 45 (2004) 1837;
(l) A.M. Caporusso, P. Innocenti, L.A. Aronica, G. Vitulli, R. Gallina, A. Biffis, M.
Zecca, B. Corain, J. Catal. 234 (2005) 1;
(m) F. Quignard, A. Choplin, Chem. Commun. (2001) 21;
(n) M.A.R. Meier, M. Filali, J.-F. Gohy, U.S. Schubert, J. Mater. Chem. 16 (2006)
3001.
On the basis of the experimental data, we propose that Pd(0)
supported on siloxane polymer, formed under the reaction condi-
tions, is the main catalytically active form. This conclusion is addi-
tionally corroborated by an experiment involving the application
of pre-formed supported Pd(0) nanoparticles, in which high yield
of the product was found.
[14] (a) S. Schweizer, J.M. Becht, C. Le Drian, Tetrahedron 66 (2010) 765;
(b) G. Liu, M. Hou, J. Song, T. Jiang, H. Fan, Z. Zhang, B. Han, Green Chem. 12
(2010) 65;
(c) J. Shin, J. Bertoia, K.R. Czerwinski, C. Bae, Green Chem. 11 (2009) 1576;
(d) C. Ornelas, A.K. Diallo, J. Ruiz, D. Astruc, Adv. Synth. Catal. 351 (2009)
2147;
(e) M. Islam, P. Mondal, K. Tuhina, A. Singha Roy, S. Mondal, D. Hossain, J.
Organomet. Chem. 695 (2010) 2284;
(f) Y. Uozumi, Y. Matsuura, T. Arakawa, Y.M.A. Yamada, Angew. Chem. Int. Ed.
48 (2009) 2708;
Acknowledgments
Financial support of the Polish Ministry of Science and Higher
Education (N164/COST/2008) and COST D40 is gratefully
acknowledged.
(g) J.-H. Li, X.-Ch. Hu, Y.-X. Xie, Tetrahedron Lett. 47 (2006) 9239;
(h) E. Alacid, C. Najera, J. Organomet. Chem. 694 (2009) 1658;
(i) D. Schonfeldel, O. Nuyken, R. Weberskirch, J. Organomet. Chem. 690 (2005)
4648.
Authors are grateful to Ms. Magdalena Słomiany (Faculty of
Chemistry, University of Wrocław) for performing of catalytic tests
and to Mr. Marek Hojniak (Faculty of Chemistry, University of Wro-
cław) for GC and GC/MS analyses.
[15] (a) R. Narayanau, M.A. El-Sayed, J. Catal. 234 (2005) 348;
(b) R. Narayanau, M.A. El-Sayed, J. Am. Chem. Soc. 125 (2003) 8340;
(c) A. Gniewek, J.J. Ziółkowski, A.M. Trzeciak, L. Ke˛pin´ ski, J. Catal. 239 (2006)
272;
(d) L. Duran Pachon, G. Rothenberg, Appl. Organomet. Chem. 22 (2008) 288;
(e) D. Astruc, F. Lu, J.R. Aranzaes, Angew. Chem. Int. Ed. 44 (2005) 7852;
(f) J. Durand, E. Teuma, M. Gomez, Eur. J. Inorg. Chem. 23 (2008) 3577;
(g) R. Brayner, G. Viau, F. Bozon-Verduraz, J. Mol. Catal. A: Chem. 227 (2002)
182.
References
[16] (a) C. Evangelisti, N. Panziera, P. Pertici, G. Vitulli, P. Salvadori, C. Battocchio, G.
Polzonetti, J. Catal. 262 (2009) 287;
(b) S. Pathak, M.T. Greci, R.C. Kwong, K. Mercado, G.K. Surya Prakash, G.A.
Olah, M.E. Thompson, Chem. Mater. 12 (2000) 1985.
[17] (a) A. Desforges, R. Backov, H. Deleuze, O. Montain-Monval, Adv. Funct. Mater.
15 (2005) 1689;
[1] L. Yin, J. Liebscher, Chem. Rev. 107 (2007) 133.
[2] V. Polshettiwar, C. Len, A. Fihri, Coord. Chem. Rev. 253 (2009) 2599.
[3] V. Polshettivar, A. Molnar, Tetrahedron 63 (2007) 6949.
[4] M.R. Buchmeiser (Ed.), Polymeric Materials in Organic Synthesis and Catalysis,
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003.
[5] P. Panster, S. Wieland, in: B. Cornils, W.A. Herrmann (Eds.), Applied Homog.
Catal. with Organomet. Comp. A. Comprehensive Handbook in Two Volumes,
VCH, Weinheim, New York, Barel, Cambridge, Tokyo, 1996.
[6] N.T.S. Phan, M. van der Sluys, C.W. Jones, Adv. Synth. Catal. 348 (2006) 609.
[7] (a) A. Papp, G. Galbacs, A. Molnar, Tetrahedron Lett. 46 (2005) 7725;
(b) A. Biffis, M. Zecca, M. Basato, Eur. J. Inorg. Chem. (2001) 1131;
(c) I. Pryjomska-Ray, A. Gniewek, A.M. Trzeciak, J.J. Ziółkowski, W. Tylus,
Topics Catal. 40 (2006) 173;
(b) X. Yang, Z. Fei, D. Zhao, W. Han Ang, Y. Li, P.J. Dyson, Inorg. Chem. 47 (2008)
3292;
(c) T. Borkowski, A.M. Trzeciak, W. Bukowski, A. Bukowska, W. Tylus, L.
Ke˛pin´ ski, Appl. Catal. A: Gen. 378 (2010) 83;
(d) T. Borkowski, P. Subik, A.M. Trzeciak, S. Wołowiec, Molecules 16 (2011) 427.
[18] V. Udayakumar, S. Alexander, V. Gayathri, Shivakumaraiah, K.R. Patil, B.
Viswanathan, J. Mol. Catal. A: Chem. 317 (2010) 111.
[19] N. Gurbuz, I. Ozdemir, B. Cetinkaya, T. Seckin, Appl. Organomet. Chem. 17
(2003) 776.
[20] M. Szulmanowicz, W. Zawartka, A. Gniewek, A.M. Trzeciak, Inorg. Chim. Acta
363 (2010) 4346.
[21] M. Cypryk, P. Pospiech, K. Strzelec, K. Wa˛sikowska, J.W. Sobczak, J. Mol. Catal.
A: Chem. 319 (2010) 30.
[22] M. Cypryk, P. Pospiech, K. Strzelec, J.W. Sobczak, Phosphorus Sulfur Silicon
Relat. Elem. 184 (2009) 1586.
[23] U. Mizerska, W. Fortuniak, J. Chojnowski, R. Hałasa, A. Konopacka, W. Werel,
Eur. Polym. J. 45 (2009) 779.
[24] (a) R. Franzen, Y. Xu, Can. J. Chem. 83 (2005) 266;
(b) N.E. Leadbeater, M. Marco J. Org. Chem. 68 (2003) 888.
[25] J.G. de Vries, Dalton Trans. (2006) 421.
[26] M.T. Reetz, J.G. de Vries, Chem. Commun. 14 (2004) 1559.
[27] (a) J.A. Widegren, M.A. Bennett, R.G. Finke, J. Am. Chem. Soc. 125 (2003)
10301;
(d) A. Gniewek, J.J. Ziółkowski, A.M. Trzeciak, M. Zawadzki, H. Grabowska, J.
Wrzyszcz, J. Catal. 254 (2008) 121;
(e) S.S. Pröckl, W. Kleist, M.A. Gruber, K. Köhler, Angew. Chem. Int. Ed. 43
(2004) 1881;
(f) W. Kleist, J.-K. Lee, K. Köhler, Eur. J. Inorg. Chem. (2009) 261;
(g) A. Cwik, Z. Hell, F. Figueras, Adv. Synth. Catal. 348 (2006) 523;
(h) L. Djakovitch, K. Köhler, J. Am. Chem. Soc. 123 (2001) 5990;
(i) L. Djakovitch, M. Wagner, C.G. Hartung, M. Beller, K. Köhler, J. Mol. Catal. A:
Chem. 219 (2004) 121;
(j) S. Noël, C. Luo, C. Pinel, L. Djakovitch, Adv. Synth. Catal. 349 (2007) 1128;
(k) A. Monopoli, A. Nacci, V. Calo, F. Ciminale, P. Cotugno, A. Mangone, L.C.
Giannossa, P. Azzone, N. Cioffi, Molecules 15 (2010) 5411;
(l) S.S. Pröckl, W. Kleist, K. Köhler, Tetrahedron 61 (2005) 9855;
´
(m) E. Mieczynska, A.M. Trzeciak, Molecules 15 (2010) 2166;
(n) E. Mieczyn´ ska, A. Gniewek, I. Pryjomska-Ray, A.M. Trzeciak, H. Grabowska,
M. Zawadzki, Appl. Catal. A: Gen. 393 (2011) 195.
(b) C.M. Hagen, J.A. Widegren, P.M. Maitlis, R.G. Finke, J. Am. Chem. Soc. 127
(2005) 4423.
[28] A. Gniewek, A.M. Trzeciak, J.J. Ziółkowski, L. Kepin´ ski, J. Wrzyszcz, W. Tylus, J.
Catal. 229 (2005) 332.
[29] C.J. Mathews, P.J. Smith, T. Welton, J. Mol. Catal. A: Chem. 206 (2003) 77.
[30] F.A. Cotton, Inorg. Synth. 13 (1972) 52.
[8] B.M. Choudary, S. Mahdi, N.S. Chowdari, M.L. Kantam, B. Sreedhar, J. Am. Chem.
Soc. 124 (2002) 14127.
[9] V. Calo, A. Nacci, A. Monopoli, A. Fornaro, L. Sabbatini, N. Cioffi, N. Ditaranto,
Organometallics 23 (2004) 5154.
[10] A.M. Trzeciak, J.J. Ziółkowski, Coord. Chem. Rev. 249 (2005) 2308.
[11] A.M. Trzeciak, J.J. Ziółkowski, Coord. Chem. Rev. 251 (2007) 1281.