Y. C. He et al./Chemical Papers 65 (6) 792–797 (2011)
797
ered hydrolyzates obtained from aqueous media with-
out ILs (Jeihanipour & Taherzadeh, 2009), indicat-
ing that the recovered hydrolyzates obtained from the
aqueous–IL [Emim]DMP–DMSO media do not have
any negative effects on the cell growth and ethanol
production. Although this fermentation process was
not optimized, potential application of recovered hy-
drolyzates was demonstrated in our case.
Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments
to enhance the digestibility of lignocellulosic biomass. Biore-
source Technology, 100, 10–18. DOI: 10.1016/j.biortech.2008.
05.027.
Jeihanipour, A., & Taherzadeh, M. J. (2009). Ethanol produc-
tion from cotton-based waste textiles. Bioresource Technol-
ogy, 100, 1007–1010. DOI: 10.1016/j.biortech.2008.07.020.
Kamiya, N., Matsushita, Y., Hanaki, M., Nakashima, K.,
Narita, M., Goto, M.,
& Takahashi, H. (2008). Enzy-
matic in situ saccharification of cellulose in aqueous-ionic
liquid media. Biotechnology Letters, 30, 1037–1040. DOI:
10.1007/s10529-008-9638-0.
Conclusions
Lucas, R., Robles, A., García, M. T., Alvarez de Cienfuegos, G.,
& Gálvez, A. (2001). Production, purification, and properties
of an endoglucanase produced by the hyphomycete Chalara
(syn. Thielaviopsis) paradoxa CH32. Journal of Agricultural
and Food Chemistry, 49, 79–85. DOI: 10.1021/jf000916p.
Mikkola, J.-P., Kirilin, A., Tuuf, J.-C., Pranovich, A., Holm-
bom, B., Kustov, L. M., Murzin, D. Y., & Salmi, T. (2007).
Ultrasound enhancement of cellulose processing in ionic
liquids: from dissolution towards functionalization. Green
Chemistry, 9, 1229–1237. DOI: 10.1039/b708533h.
Moulthrop, J. S., Swatloski, R. P., Moyna, G., & Rogers, R.
D. (2005). High-resolution 13C NMR studies of cellulose and
cellulose oligomers in ionic liquid solutions. Chemical Com-
munications, 12, 1557–1559. DOI: 10.1039/b417745b.
Petersson, A., Thomsen, M. H., Hauggaard-Nielsen, H., &
Thomsen, A.-B. (2007). Potential bioethanol and biogas pro-
duction using lignocellulosic biomass from winter rye, oilseed
rape and faba bean. Biomass and Bioenergy, 31, 812–819.
DOI: 10.1016/j.biombioe.2007.06.001.
Remsing, R. C., Hernandez, G., Swatloski, R. P., Massefski, W.
W., Rogers, R. D., & Moyna, G. (2008). Solvation of carbo-
hydrates in N,N’-dialkylimidazolium ionic liquids: A multi-
nuclear NMR spectroscopy study. The Journal of Physical
Chemistry B, 112, 11071–11078. DOI: 10.1021/jp8042895.
Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005).
Dilute acid pretreatment, enzymatic saccharification and fer-
mentation of wheat straw to ethanol. Process Biochemistry,
40, 3693–3700. DOI: 10.1016/j.procbio.2005.04.006.
In our study, IL [Emim]DMP showed favorable sol-
ubility with cellulose and biocompatibility with cel-
lulase. Thus, the novel reaction system involving an
aqueous–IL [Emim]DMP–DMSO (ϕr = 74 : 25 : 1)
mixture was chosen for enzymatic saccharification of
cellulose. After optimization of the reaction param-
eters, the conversion of cellulose to glucose reached
80.2 %. Furthermore, fermentability of the recovered
hydrolyzates was evaluated using Saccharomyces cere-
visiae. This microbe is able to ferment hydrolyzates
to ethanol without negative effects. In summary, our
work presents the IL [Emim]DMP as a promising sol-
vent for enzymatic in situ hydrolysis of cellulose in
aqueous–IL [Emim]DMP–DMSO media; however, its
cost is very high and further study on this subject is
needed.
Acknowledgements. This work was financially supported
by the Natural Foundation of Guangxi (No. 0991001), the
Talent Introduction Foundation of the Changzhou University
(No. ZMF10020077), University student’s Science & Technol-
ogy Creation Foundation of the Changzhou University, and the
Open Funding Project of the State Key Laboratory of Bioreac-
tor Engineering, East China University of Science and Tech-
nology.
Xian, M., Li, L., He, Y., Tan, W., Li, Q., & Yang, F. (2009).
Chinese Patent No. 200910093300.8. Shanghai, China: China
Patent & Trademark Office.
References
Yán˜ez, R., Alonso, J. L., & Parajó, J. C. (2006). Enzymatic
saccharification of hydrogen peroxide-treated solids from hy-
drothermal processing of rice husks. Process Biochemistry,
41, 1244–1252. DOI: 10.1016/j.procbio.2005.12.020.
Zhao, H., Baker, G. A., Song, Z., Olujabo, O., Crittle, T., &
Peters, D. (2008). Designing enzyme-compatible ionic liquids
that can dissolve carbohydrates. Green Chemistry, 10, 696–
705. DOI: 10.1039/B801489B.
Zhao, H., Jones, C. L., Baker, G. A., Xia, S., Olujabo, O., & Per-
son, V. N. (2009). Regenerating cellulose from ionic liquids
for an accelerated enzymatic hydrolysis. Journal of Biotech-
nology, 139, 47–54. DOI: 10.1016/j.jbiotec.2008.08.009.
Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X.,
& Saddler, J. N. (2007). Substrate pretreatment: The key to
effective enzymatic hydrolysis of lignocellulosics? Advances
in Biochemical Engineering/Biotechnology, 108, 67–93. DOI:
10.1007/10 2007 064.
Dadi, A. P., Varanasi, S., & Schall, C. A. (2006). Enhancement
of cellulose saccharification kinetics using an ionic liquid pre-
treatment step. Biotechnology and Bioengineering, 95, 904–
910. DOI: 10.1002/bit.21047.
Heinze, T., & Liebert, T. (2001). Unconventional methods in
cellulose functionalization. Progress in Polymer Science, 26,
1689–1762. DOI: 10.1016/S0079-6700(01)00022-3.