Paper
RSC Advances
Table 3 The infrared characteristic peaks and attribution of lignocellulose46
Wavenumber (cmꢀ1
Pretreated corncob
)
Attribution of characteristic peak
Hydrolyzed-corncob
O–H stretching in hydroxyl groups
C–H stretching in methyl and methylene groups
C–H deformations (asymmetry in methyl groups, –CH3– and –CH2–)
Aromatic skeletal vibrations combined with C–H in plane deformations
Aliphatic C–H stretching in methyl and phenol OH
C–H out-of-plane in positions 2 and 6 (S units)
3420
2920
1462
1425
1373
896
3408
2920
1463
1423
1371
896
´
determination of the hydrogen bonding strength, need to be
examined in future studies.
7 M. Monrroy, I. Ortega, M. Ramırez, J. Baeza and J. Freer,
Enzyme Microb. Technol., 2011, 49, 472–477.
8 C. M. Mooney, S. D. Manseld and J. N. Saddler, Biotechnol.
Prog., 1999, 15, 804–816.
Conclusions
9 S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla and
D. K. Johnson, Biotechnol. Biofuels, 2010, 3, 10.
10 R. Huang, R. Su, W. Qi and Z. He, Biotechnol. Prog., 2010, 26,
384–392.
11 B. Medronho, A. Romano, M. G. Miguel, L. Stigsson and
B. Lindman, Cellulose, 2012, 19, 581–587.
In summary, we have demonstrated the terahertz spectroscopy
as an efficient technique for directly evaluating the hydrogen
bonding strength within cellulose. The increased THz adsorp-
tion and refractive index provided a clear signal of an increase
in the hydrogen bonding strength in the residual Avicel and
corncob aer enzymatic hydrolysis. The THz results were
further compared with the XRD and FTIR analysis, as well as
with the SEC-MALLS results reported in our previous study. The
THz method demonstrated in this study opens a new avenue for
evaluating the change in the hydrogen bonding strength in
cellulose and thus provides some molecular information for
understanding the mechanism of cellulose degradation.
´
12 Y. Marechal and H. Chanzy, J. Mol. Struct., 2000, 523, 183–
196.
13 K. Kamide, K. Okajima and K. Kowsaka, Polym. J., 1992, 24,
71–86.
14 S. Y. Oh, D. I. Yoo, Y. Shin and G. Seo, Carbohydr. Res., 2005,
340, 417–428.
15 X. Colom and F. Carrillo, Eur. Polym. J., 2002, 38, 2225–2230.
16 R. Ponni, E. Kontturi and T. Vuorinen, Carbohydr. Polym.,
¨
2013, 93, 424–429.
17 M. Suchy, E. Kontturi and T. Vuorinen, Biomacromolecules,
2010, 11, 2161–2168.
18 M. Zhang, W. Qi, R. Liu, R. Su, S. Wu and Z. He, Biomass
Bioenergy, 2010, 34, 525–532.
19 M. Wada, L. Heux, Y. Nishiyama and P. Langan, Cellulose,
2009, 16, 943–957.
20 M. Hangyo, M. Tani and T. Nagashima, Int. J. Infrared
Millimeter Waves, 2005, 26, 1661–1690.
21 C. Yan, B. Yang and Z. C. Yu, Analyst, 2014, 139, 1967–1972.
22 A. Arora, T. Q. Luong, M. Kruger, Y. J. Kim, C. H. Nam,
A. Manz and M. Havenith, Analyst, 2012, 137, 575–579.
23 A. Redo-Sanchez, G. Salvatella, R. Galceran, E. Roldos,
J. A. Garcia-Reguero, M. Castellari and J. Tejada, Analyst,
2011, 136, 1733–1738.
24 Y. C. Shen, P. C. Upadhya, E. H. Lineld and A. G. Davies,
Appl. Phys. Lett., 2003, 82, 2350.
25 R. Liu, M. He, R. Su, Y. Yu, W. Qi and Z. He, Biochem. Biophys.
Res. Commun., 2010, 391, 862–867.
Acknowledgements
We acknowledge the nancial supports received from the
National Natural Science Foundation of China (no. 21276192),
the Ministry of Science and Technology of China (no.
2012BAD29B05 and 2013AA102204), Open Funding Project of
the State Key Laboratory of Chemical Engineering (no. SKL-ChE-
11B01), and the Ministry of Education (no. NCET-11-0372,
20110032130004, and B06006).
Notes and references
1 R. Huang, R. Su, W. Qi and Z. He, BioEnergy Res., 2011, 4,
225–245.
2 H. Jørgensen, J. B. Kristensen and C. Felby, Biofuels, Bioprod.
Bioren., 2007, 1, 119–134.
3 H. Chen and W. Qiu, Biotechnol. Adv., 2010, 28, 556–562.
4 S. P. S. Chundawat, G. Bellesia, N. Uppugundla, L. D. Sousa,
D. H. Gao, A. M. Cheh, U. P. Agarwal, C. M. Bianchetti,
G. N. Phillips, P. Langan, V. Balan, S. Gnanakaran and
B. E. Dale, J. Am. Chem. Soc., 2011, 133, 11163–11174.
5 L. T. Fan, Y.-H. Lee and D. H. Beardmore, Biotechnol. Bioeng.,
1980, 22, 177–199.
26 T. Bardon, R. K. May, P. F. Taday and M. Strlic, Analyst, 2013,
138, 4859–4869.
27 R. Y. Du, R. L. Huang, R. X. Su, M. J. Zhang, M. F. Wang,
J. F. Yang, W. Qi and Z. M. He, RSC Adv., 2013, 3, 1871–1877.
28 M. Zhang, R. Su, W. Qi, R. Du and Z. He, Chin. J. Chem. Eng.,
2011, 19, 773–778.
6 B. Yang and C. E. Wyman, Biotechnol. Bioeng., 2004, 86, 88–
98.
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 57945–57952 | 57951