Organometallics
Communication
In Science of Synthesis: Knowledge Updates 2013/3; Oestreich, M., Ed.;
Thieme: Stuttgart, 2013; pp 1−42. (c) Reed, C. A. Acc. Chem. Res.
2010, 43, 121−128. (d) Lambert, J. B.; Zhao, Y.; Zhang, S. M. J. Phys.
Org. Chem. 2001, 14, 370−379. (e) Lambert, J. B.; Kania, L.; Zhang, S.
Chem. Rev. 1995, 95, 1191−1201.
Scheme 4. Generation of Intermolecularly Sulfur-Stabilized
Silylium Ions by the Cyclohexadienyl-Leaving-Group
Approach in the Presence of a Sulfide Donor
(2) (a) Corey, J. Y. J. Am. Chem. Soc. 1975, 97, 3237−3238.
(b) Corey, J. Y.; Gust, D.; Mislow, K. J. Organomet. Chem. 1975, 101,
C7−C8.
(3) Lambert, J. B.; Zhang, S.; Stern, C. L.; Huffman, J. C. Science
1993, 260, 1917−1918.
(4) Kim, K.-C.; Reed, C. A.; Elliott, D. W.; Mueller, L. J.; Tham, F.;
Lin, L.; Lambert, J. B. Science 2002, 297, 825−827.
(5) Lambert, J. B.; Zhao, Y.; Wu, H.; Tse, W. C.; Kuhlmann, B. J. Am.
Chem. Soc. 1999, 121, 5001−5008.
(6) The technique itself had been reported earlier by Schade and
Mayr: Schade, C.; Mayr, H. Makromol. Chem., Rapid Commun. 1988, 9,
477−482.
(7) (a) Klare, H. F. T.; Bergander, K.; Oestreich, M. Angew. Chem.,
Int. Ed. 2009, 48, 9077−9079. (b) Schmidt, R. K.; Muther, K.; Muck-
̈
̈
to-carbon hydride transfer upon treatment with equimolar
amounts of trityl salt 1. However, sufficient stabilization of the
released silylium ion by an internal or external donor group
must be available to prevent its reaction with the allylic silane
units of the unreacted precursor, i.e., the cyclohexa-1,4-diene
moiety. Intramolecular stabilization was realized in a ferrocenyl-
substituted system, and intermolecular Lewis pair formation
was achieved with diphenylsulfide. As part of this work, we also
demonstrated that the stoichiometric reaction of an allylic
silane and a benzene-stabilized silylium ion yields a remarkably
stable alkyl-substituted secondary carbenium ion.
Lichtenfeld, C.; Grimme, S.; Oestreich, M. J. Am. Chem. Soc. 2012,
134, 4421−4428. (c) Rohde, V. H. G.; Pommerening, P.; Klare, H. F.
T.; Oestreich, M. Organometallics 2014, 33, 3618−3628. (d) Rohde, V.
H. G.; Muller, M. F.; Oestreich, M. Organometallics 2015, 34, 3358−
̈
3373.
(8) For a recent review, see: (a) Oestreich, M.; Hermeke, J.; Mohr, J.
Chem. Soc. Rev. 2015, 44, 2202−2220. For mechanistic work, see:
(b) Rendler, S.; Oestreich, M. Angew. Chem., Int. Ed. 2008, 47, 5997−
6000. (c) Hermeke, J.; Mewald, M.; Oestreich, M. J. Am. Chem. Soc.
2013, 135, 17537−17546.
(9) (a) Simonneau, A.; Oestreich, M. Angew. Chem., Int. Ed. 2013, 52,
11905−11907. (b) Simonneau, A.; Friebel, J.; Oestreich, M. Eur. J.
Org. Chem. 2014, 2077−2083. (c) Keess, S.; Simonneau, A.; Oestreich,
M. Organometallics 2015, 34, 790−799.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
(10) Sakata, K.; Fujimoto, H. Organometallics 2015, 34, 236−241.
(11) Arenium ion intermediates are named after Wheland, but their
existence had already been noted by Pfeiffer and Wizinger before
Wheland’s quantum-mechanical analysis: (a) Wheland, G. W. J. Am.
Chem. Soc. 1942, 64, 900−908. (b) Pfeiffer, P.; Wizinger, R. Liebigs
Ann. Chem. 1928, 461, 132−154.
S
Synthetic procedures and figures giving NMR spectra of
the previously unknown compounds synthesized in this
(12) (a) Muther, K.; Frohlich, R.; Muck-Lichtenfeld, C.; Grimme, S.;
̈
̈
̈
Oestreich, M. J. Am. Chem. Soc. 2011, 133, 12442−12444. (b) Muther,
̈
K.; Hrobar
́ ́ ́
ik, P.; Hrobarikova, V.; Kaupp, M.; Oestreich, M. Chem. -
Eur. J. 2013, 19, 16579−16594.
(13) Lambert, J. B.; Zhang, S. J. Chem. Soc., Chem. Commun. 1993,
383−384.
AUTHOR INFORMATION
Corresponding Authors
■
(14) Lambert, J. B.; Zhao, Y.; Emblidge, R. W.; Salvador, L. A.; Liu,
X.; So, J.-H.; Chelius, E. C. Acc. Chem. Res. 1999, 32, 183−190.
(15) For seminal reports of carbenium ions/carbocations stabilized
through the β-silicon effect, see: (a) Lambert, J. B.; Zhao, Y.; Wu, H. J.
Present Address
Org. Chem. 1999, 64, 2729−2736. (b) Meyer, R.; Werner, K.; Muller,
̈
†Laboratoire de Chimie de Coordination (LCC), CNRS, 205
Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4,
France.
T. Chem. - Eur. J. 2002, 8, 1163−1172.
(16) (a) Olah, G. A.; Prakash, G. K. S., Eds. Carbocation Chemistry;
Wiley: Hoboken, 2004. (b) Vogel, P. Carbocation Chemistry; Elsevier:
Amsterdam, 1985. (c) Bethell, D.; Gold, V. Carbonium Ions; Academic
Press: London, 1967. (d) Olah, G. A.; Schleyer, P. v. R., Eds.;
Carbonium Ions; Wiley: New York, 1968−1976; Vols I−V.
(17) Schormann, M.; Garratt, S.; Hughes, D. L.; Green, J. C.;
Bochmann, M. J. Am. Chem. Soc. 2002, 124, 11266−11267.
(18) For the formation of lithium hydride from cyclohexa-2,5-dien-1-
yllithium, see: Bates, R. B.; Gosselink, D. W.; Kaczynski, J. A.
Tetrahedron Lett. 1967, 199−204.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was (in part) supported by the Deutsche
Forschungsgemeinschaft (Oe 249/9-1). A.S. gratefully acknowl-
edges the Alexander von Humboldt Foundation for a
postdoctoral fellowship (2014−2015). M.O. is indebted to
the Einstein Foundation (Berlin) for an endowed professorship.
We thank Dr. Elisabeth Irran (TU Berlin) for the X-ray
analysis.
(19) For conformational analyses of cyclohexa-1,4-dienes, see:
Bennett, M. J.; Purdham, J. T. Can. J. Chem. 1978, 56, 1358−1363
and cited references .
(20) Prakash, G. K. S.; Bae, C.; Wang, Q.; Rasul, G.; Olah, G. A. J.
Org. Chem. 2000, 65, 7646−7649.
REFERENCES
■
(1) (a) Muller, T. In Structure and Bonding (Berlin); Scheschkewitz,
̈
D., Ed.; Springer: Berlin, 2014; Vol. 155, pp 107−162. (b) Muller, T.
̈
3929
Organometallics 2015, 34, 3927−3929