Angewandte
Chemie
Waterhouse, R. H. Shults, G. F. Hennion, J. Org. Chem. 1978, 43,
1385 – 1388.
Experimental Section
iPrMgCl (2m in Et2O, 0.42 mL, 0.83 mmol) was transferred by syringe
into a solution of 1-prop-1-ynyl-9-oxa-bicyclo[6.1.0]nonane (105 mg,
0.64 mmol) and [Fe(acac)3] (11 mg, 0.03 mmol) in toluene (14 mL) at
À 58C under Ar, causing an immediate color change from bright red
to dark brown/black. After stirring for 5 min, the mixture was
quenched with NH4Cl (5 mL) and diluted with Et2O (10 mL), the
layers were separated, and the aqueous phase was extracted with
Et2O (3 5 mL). The combined organic layers were dried over
MgSO4, and the residue was purified by flash chromatography (5:1
pentane/Et2O) to provide 2-(2,3-dimethylbut-1-enylidene)-cycloocta-
[9] A. S. K. Hashmi, G. Szeimies, Chem. Ber. 1994, 127, 1075 – 1089.
[10] For reports on the reaction of certain allylic substrates under
iron catalysis, see: a) A. Yanagisawa, N. Nomura, H. Yamamoto,
Tetrahedron 1994, 50, 6017 – 6028; b) A. Yanagisawa, N.
Nomura, H. Yamamoto, Synlett 1991, 513 – 514; c) M. Naka-
mura, K. Matsuo, T. Inoue, E. Nakamura, Org. Lett. 2003, 5,
1373 – 1375; d) M. Nakamura, A. Hirai, E. Nakamura, J. Am.
Chem. Soc. 2000, 122, 978 – 979.
[11] D. E. Frantz, R. Fassler, E. M. Carreira, J. Am. Chem. Soc. 2000,
122, 1806 – 1807.
[12] The enantiomerically enriched substrates used in this study were
prepared by enantioselective oxidation of the corresponding
enynes; see: Z.-X. Wang, G.-A. Cao, Y. Shi, J. Org. Chem. 1999,
64, 7646 – 7650.
[13] Control experiments showed that the iron catalyst is essential;
no productive allenol formation is observed in the absence of
[Fe(acac)3].
[14] Organocopper reagents show a certain tendency to undergo
direct nucleophilic substitution of the epoxide, in particular if the
reaction is carried out with only catalytic amounts of copper, see
comments in reference [1f].
[15] The stereochemical assignment was corroborated by NOE
measurements of the dihydrofuran derivatives formed from
selected allenols upon treatment with AgNO3.[16c] All other
compounds were assigned by analogy. A representative example
is shown below.
~
nol as a colorless oil (100 mg, 75%, d.r. 86:14). IR (KBr): n = 3402,
2931, 2858, 1943, 1115 cmÀ1 1H NMR (400 MHz, CD2Cl2): d = 4.10
;
(dd, J = 7.9, 3.7 Hz, 1H; anti), 4.07 (dd, J = 8.8, 4.0 Hz, 1H; syn), 2.30–
2.10 (m, 2H), 2.05 (m, 1H), 1.87 (m, 1H), 1.71 (s, 3H), 1.70–1.05 (m,
10H), 1.05 (d, J = 1.9 Hz, 3H; syn), 1.04 (d, J = 1.9 Hz, 3H; syn), 1.03
(d, J = 1.9 Hz, 3H; anti), 1.01 ppm (d, J = 1.9 Hz, 3H; anti); syn
isomer: 13C NMR (100 MHz, CD2Cl2; DEPT) d = 197.27 (C), 109.91
(C), 109.67 (C), 72.81 (CH), 33.36 (CH2), 32.99 (CH), 29.66 (CH2),
29.84 (CH2), 26.50 (CH2), 25.92 (CH2), 23.24 (CH2), 22.17 (CH3),
22.04 (CH3), 17.33 ppm (CH3); anti isomer: 13C NMR (100 MHz,
CD2Cl2; DEPT): d = 196.67 (C), 110.58 (C), 110.04 (C), 71.97 (CH),
33.29 (CH2), 33.08 (CH), 29.45 (CH2), 29.18 (CH2), 26.61 (CH2), 26.04
(CH2), 22.92 (CH2), 22.04 (CH3), 21.97 (CH3), 17.37 ppm (CH3); MS
(EI, 70 eV): m/z (%): 208 (10) [M+], 193 (30), 165 (13), 137 (38), 110
(27), 95 (100); HMRS: calcd for C14H24O: 208.1828; found: 208.1827.
Received: July 22, 2003 [Z52441]
Keywords: alkynes · allenes · cross-coupling · epoxides · iron
.
[1] For selected reviews, see: a) J. A. Marshall, Chem. Rev. 2000,
100, 3163 – 3185; b) R. Zimmer, C. U. Dinesh, E. Nandanan,
F. A. Khan, Chem. Rev. 2000, 100, 3067 – 3125; c) S. Ma, Acc.
Chem. Res. 2003, 36, 701 – 712; d) A. S. K. Hashmi, Angew.
Chem. 2000, 112, 3737 – 3740; Angew. Chem. Int. Ed. 2000, 39,
3590 – 3593; e) A. Hoffmann-Röder, N. Krause, Angew. Chem.
2002, 114, 3057 – 3059; Angew. Chem. Int. Ed. 2002, 41, 2933 –
2935; f) N. Krause, A. Hoffmann-Röder, J. Canisius, Synthesis
2002, 1759 – 1774; g) H. F. Schuster, G. M. Coppola, Allenes in
Organic Synthesis, Wiley, New York, 1984, and references
therein.
[16] a) P. Vermeer, J. Meijer, C. de Graaf, H. Schreurs, Recl. Trav.
Chim. Pays-Bas 1974, 93, 46 – 47; b) A. C. Oehlschlager, E.
Czyzewska, Tetrahedron Lett. 1983, 24, 5587 – 5590; c) J. A.
Marshall, K. G. Pinney, J. Org. Chem. 1993, 58, 7180 – 7184; d) C.
Spino, S. FrØchette, Tetrahedron Lett. 2000, 41, 8033 – 8036;
e) C. R. Johnson, D. S. Dhanoa, J. Org. Chem. 1987, 52, 1885 –
1888; f) A. Doutheau, A. Saba, J. Gore, G. Quash, Tetrahedron
Lett. 1982, 23, 2461 – 2464; g) P. R. Ortiz de Montellano, J. Chem.
Soc. Chem. Commun. 1973, 709 – 710; h) R. K. Dieter, L. E.
Nice, Tetrahedron Lett. 1999, 40, 4293 – 4296; i) F. Bertozzi, P.
Crotti, F. Macchia, M. Pineschi, A. Arnold, B. L. Feringa,
Tetrahedron Lett. 1999, 40, 4893 – 4896.
[17] a) A similar rationale has been proposed for the formation of
bromoallenes from propargyl alcohols and CuBr: N. Bernard, F.
Chemea, J. F. Normant, Tetrahedron Lett. 1998, 39, 8837 – 8840;
b) for a review, see: A. H. Hoveyda, D. A. Evans, G. C. Fu,
Chem. Rev. 1993, 93, 1307 – 1370.
[2] For a review, see: N. Krause, A. Hoffmann-Röder, in Modern
Organocopper Chemistry (Ed.: N. Krause), Wiley-VCH, Wein-
heim, 2002, pp. 145 – 166, and references therein.
[3] For a recent exception, see: Z. Wan, S. G. Nelson, J. Am. Chem.
Soc. 2000, 122, 10470 – 10471.
[4] For detailed studies on the effect of additives as well as for an in-
depth mechanistic discussion, see the following for leading
references: a) A. Alexakis, I. Marek, P. Mangeney, J. F. Norm-
ant, J. Am. Chem. Soc. 1990, 112, 8042 – 8047; b) A. Alexakis, I.
Marek, P. Mangeney, J. F. Normant, Tetrahedron 1991, 47, 1677 –
1696.
[5] C. Sahlberg, A. Claesson, J. Org. Chem. 1984, 49, 4120 – 4122.
[6] a) C. J. Elsevier, P. Vermeer, J. Org. Chem. 1989, 54, 3726 – 3730;
b) H. Westmijze, I. Nap, J. Meijer, H. Kleijn, P. Vermeer, Recl.
Trav. Chim. Pays-Bas 1983, 102, 154 – 157; c) A. Claesson, L.-I.
Olsson, J. Chem. Soc. Chem. Commun. 1979, 524 – 525.
[7] a) A. Fürstner, A. Leitner, Angew. Chem. 2002, 114, 632 – 635;
Angew. Chem. Int. Ed. 2002, 41, 609 – 612; b) A. Fürstner, A.
Leitner, M. MØndez, H. Krause, J. Am. Chem. Soc. 2002, 124,
13856 – 13863; c) A. Fürstner, A. Leitner, Angew. Chem. 2003,
115, 320 – 323; Angew. Chem. Int. Ed. 2003, 42, 308 – 311.
[8] a) D. J. Pasto, G. F. Hennion, R. H. Shults, A. Waterhouse, S.-K.
Chou, J. Org. Chem. 1976, 41, 3496; b) D. J. Pasto, S.-K. Chou, A.
[18] For a recent application, see the following Communication in
this issue: A. Fürstner, D. De Souza, L. Parra-Rapado, J. T.
Jensen, Angew. Chem. 2003, 115, 5516 – 5518; Angew. Chem. Int.
Ed. 2003, 42, 5358 – 5360.
Angew. Chem. Int. Ed. 2003, 42, 5355 –5357
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5357