10.1002/chem.201802058
Chemistry - A European Journal
COMMUNICATION
17, 412-419; h) J. M. Antos, M. B. Francis, Curr. Opin. Chem. Biol.
2006, 10, 253-262; i) J. H. van Maarseveen, J. N. H. Reek, J. W. Back,
Angew. Chem. Int. Ed. 2006, 45, 1841-1843; j) J. M. Chalker, in
Chemoselective and Bioorthogonal Ligation Reactions (Eds.: W. R.
Algar, P. Dawson, I. L. Medintz), Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, 2017, pp. 231-270; k) M. Yang, J. Li, P. R. Chen, Chem.
Soc. Rev. 2014, 43, 6511-6526.
results in significantly higher amidation yields, we do see trace
amounts of desired product using unligated gold, such as
NaAuCl4 (Figure 2C-Lane 1 shows faint protein conjugation;
direct conversion of 14 to 16 gives trace yields <1%). In this
case, we believe unligated gold may weakly activate the
propargyl ester by coordinating to the alkyne moiety. One could
surmise that a low level of propargyl ester based-conjugation on
glycoalbumin surfaces may in fact be facilitated by simple gold-
coordination from the BPy-Au moiety. This would have to take
place catalytically before the spontaneous reductive elimination
of the Au(III) complex occurs, which we have found takes a
considerable amount of time (overnight reaction).
Overall, significant advances to the understanding of BPy-Au
mediated propargyl ester protein ligation were made. Coupled
with the continued development of organ-targeting, metal-carrier
glycoalbumins, this work will undeniably aid the development of
future therapeutic applications, some of which focus on
anticancer approaches that could use gold-mediated labeling of
biomarkers (ex/ antigens) to targeted tissue surface proteins (ex/
tumors).
[2]
[3]
S. Kalkhof, A. Sinz, Anal. Bioanal. Chem. 2008, 392, 305-312.
a) K. Tanaka, K. Fukase, S. Katsumura, Synlett 2011, 2011, 2115-
2139; b) K. Tanaka, M. Kitadani, A. Tsutsui, A. R. Pradipta, R. Imamaki,
S. Kitazume, N. Taniguchi, K. Fukase, Org. Biomol. Chem. 2014, 12,
1412-1418; c) K. Tanaka, Y. Fujii, K. Fukase, ChemBioChem 2008, 9,
2392-2397.
[4]
a) Y. Kim, S. O. Ho, N. R. Gassman, Y. Korlann, E. V. Landorf, F. R.
Collart, S. Weiss, Bioconjugate Chem. 2008, 19, 786-791; b) S. Sechi,
B. T. Chait, Anal. Chem. 1998, 70, 5150-5158; c) J. M. Chalker, G. J. L.
Bernardes, Y. A. Lin, B. G. Davis, Chem. Asian J. 2009, 4, 630-640; d)
M. H. Stenzel, ACS Macro Lett. 2013, 2, 14-18.
[5]
[6]
[7]
A. O. Y. Chan, J. L. L. Tsai, V. K. Y. Lo, G. L. Li, M. K. Wong, C. M.
Che, Chem. Commun. 2013, 49, 1428-1430.
K. K. Y. Kung, H. M. Ko, J. F. Cui, H. C. Chong, Y. C. Leung, M. K.
Wong, Chem. Commun. 2014, 50, 11899-11902.
K. Tsubokura, K. K. H. Vong, A. R. Pradipta, A. Ogura, S. Urano, T.
Tahara, S. Nozaki, H. Onoe, Y. Nakao, R. Sibgatullina, A.
Kurbangalieva, Y. Watanabe, K. Tanaka, Angew. Chem. Int. Ed. 2017,
56, 3579-3584.
Acknowledgements
[8]
a) A. Ogura, T. Tahara, S. Nozaki, K. Morimoto, Y. Kizuka, S. Kitazume,
M. Hara, S. Kojima, H. Onoe, A. Kurbangalieva, N. Taniguchi, Y.
Watanabe, K. Tanaka, Sci. Rep. 2016, 6, 21797; b) L. Latypova, R.
Sibgatullina, A. Ogura, K. Fujiki, A. Khabibrakhmanova, T. Tahara, S.
Nozaki, S. Urano, K. Tsubokura, H. Onoe, Y. Watanabe, A.
Kurbangalieva, K. Tanaka, Adv. Sci. 2017, 4, 1600394; c) A. Ogura, T.
Tahara, S. Nozaki, H. Onoe, A. Kurbangalieva, Y. Watanabe, K.
Tanaka, Bioorganic Med. Chem. Lett. 2016, 26, 2251-2254.
a) J. Ghuman, P. A. Zunszain, I. Petitpas, A. A. Bhattacharya, M.
Otagiri, S. Curry, J. Mol. Biol. 2005, 353, 38-52; b) A. Garg, D. Mark
Manidhar, M. Gokara, C. Malleda, C. Suresh Reddy, R. Subramanyam,
PLOS ONE 2013, 8, e63805.
This work was supported by JSPS KAKENHI Grant Numbers
JP16H03287, JP16K13104, and JP15H05843 in Middle
Molecular Strategy. A part of this study was done with a subsidy
from the Russian Government “Program of Competitive Growth
of Kazan Federal University among World’s Leading Academic
Centers”. SDS-PAGE gel fluorescence analysis was performed
using the Molecular Imager FX, Common Use Equipment, in the
Support Unit for Bio-Material Analysis, RIKEN BSI, Research
Resources Center (RRC).
[9]
[10] K. K. H. Vong, K. Tsubokura, Y. Nakao, T. Tanei, S. Noguchi, S.
Kitazume, N. Taniguchi, K. Tanaka, Chem. Commun. 2017, 53, 8403-
8406.
Keywords: Gold catalysis • protein conjugation • aryl-alkynyl
cross coupling
[11] Y. Fuchita, H. Ieda, Y. Tsunemune, J. Kinoshita-Nagaoka, H. Kawano,
J. Chem. Soc., Dalton Trans. 1998, 791-796.
[1]
a) C. D. Spicer, B. G. Davis, Nat. Commun. 2014, 5, 4740; b) E. Baslé,
N. Joubert, M. Pucheault, Chem. Biol. 2010, 17, 213-227; c) C. P. R.
Hackenberger, D. Schwarzer, Angew. Chem. Int. Ed. 2008, 47, 10030-
10074; d) S. S. van Berkel, M. B. van Eldijk, J. C. M. van Hest, Angew.
Chem. Int. Ed. 2011, 50, 8806-8827; e) Craig S. McKay, M. G. Finn,
Chem. Biol. 2014, 21, 1075-1101; f) A. J. de Graaf, M. Kooijman, W. E.
Hennink, E. Mastrobattista, Bioconjugate Chem. 2009, 20, 1281-1295;
g) C. H. Kim, J. Y. Axup, P. G. Schultz, Curr. Opin. Chem. Biol. 2013,
[12] W. J. Wolf, M. S. Winston, F. D. Toste, Nat. Chem. 2013, 6, 159-164.
[13] H. Kawai, W. J. Wolf, A. G. DiPasquale, M. S. Winston, F. D. Toste, J.
Am. Chem. Soc. 2016, 138, 587-593.
[14] M. S. Winston, W. J. Wolf, F. D. Toste, J. Am. Chem. Soc. 2014, 136,
7777-7782.
[15] S. Kim, J. Rojas-Martin, F. D. Toste, Chem. Sci. 2016, 7, 85-88.
This article is protected by copyright. All rights reserved.