Communication
ChemComm
spectrum of d-Al13-CoW12 shows a single signal at 4.9 ppm Notes and references
(
Fig. 3b), which has a slightly higher chemical shift than that of
‡
Pinacol to pinacolone rearrangement over various solid catalysts and
e-Al -CoW (4.6 ppm). Given the fact that a higher chemical
1
3
12
conditions are summarized in Table S1. Note that there are many
shift corresponds to a decrease in electron density of the superior catalysts for this reaction. In this work, catalytic reaction was
2
7,28
utilized as a characterization.
proton,
than e-Al13-CoW12, which is in line with the catalytic results
Table 1). The difference in Brønsted acidity was also character-
ized by IR spectroscopy using pyridine as a basic probe
d-Al -CoW would exhibit higher Brønsted acidity
13 12
1 W. H. Casey, Chem. Rev., 2006, 106, 1–16.
2
K. W. Corum, M. Fairley, D. K. Unruh, M. K. Payne, T. Z. Forbes and
S. E. Mason, Inorg. Chem., 2015, 54, 8367–8374.
(
3
W. Wang, L. B. Fullmer, N. A. G. Bandeira, S. Goberna-Ferr o´ n,
L. N. Zakharov, C. Bo, D. A. Keszler and M. Nyman, Chemistry,
2
3
molecule. As shown in Fig. 3c, the IR spectra of the PICs
contain three main regions corresponding to hydrogen-bonded
pyridine (PyH; 1591–1592 and 1441 cm ), pyridine adsorbed
on Lewis acid sites (LAS; 1613–1614 and 1487 cm ), and on
Brønsted acidic sites (BAS; 1540–1542 and 1487 cm ).
Particularly, the band at 1540–1542 cm can be assigned to
a combination mode which involves the N –H deformation of
pyridinium ion. Notably, the intensities of the bands corres-
ponding to BAS in d-Al13-CoW12 were higher than those in
2
016, 1, 887–901.
4 S. E. Smart, V. Dubovoy and L. Pan, Chem. Commun., 2019, 55,
998–6001.
À1
5
À1
5 M. Shohel, J. L. Bjorklund, J. A. Smith, D. V. Kravchuk, S. E. Mason
and T. Z. Forbes, Angew. Chem., Int. Ed., 2021, 60, 8755–8759.
6 J. Rowsell and L. F. Nazar, J. Am. Chem. Soc., 2000, 122, 3777–3778.
À1 29,30
À1
7
J.-H. Son, H. Choi and Y.-U. Kwon, J. Am. Chem. Soc., 2000, 122,
7432–7433.
+
3
1
8
9
J.-H. Son and Y.-U. Kwon, Inorg. Chem., 2004, 43, 1929–1932.
S. Abeysinghe, D. K. Unruh and T. Z. Forbes, Cryst. Growth Des.,
2012, 12, 2044–2051.
e-Al13-CoW12, suggesting that d-Al13-CoW12 possesses relatively 10 S. E. Smart, J. Vaughn, I. Pappas and L. Pan, Chem. Commun., 2013,
4
9, 11352–11354.
stronger Brønsted acidic sites. Taking all these observations
1
1 A. F. Oliveri, C. A. Colla, C. K. Perkins, N. Akhavantabib,
J. R. Callahan, C. D. Pilgrim, S. E. Smart, P. H. Cheong, L. Pan
and W. H. Casey, Chem. – Eur. J., 2016, 22, 18682–18685.
2 B. Gu, C. Sun, J. C. Fettinger, W. H. Casey, A. Dikhtiarenko,
J. Gascon, K. Koichumanova, K. B. S. S. Gupta, H. J. Heeres and
S. He, Chem. Commun., 2018, 54, 4148–4151.
together, we postulate that the rotated [Al O ] trimers of d-Al
13
3
13
moiety in d-Al -CoW afford an increased Brønsted acidity,
1
3
12
1
resulting in the enhanced catalytic activity in the pinacol
rearrangement.
In summary, we have studied, for the first time, the isomeric 13 G. An, Y. Jiang, J. Xi, L. Liu, P. Wang, F. Xiao and D. Wang,
CrystEngComm, 2019, 21, 202–206.
effects on the acidity of PICs based on different Keggin-type Al13
rotational isomers. To disclose the reactivity of d-Al13 based PICs,
1
4 K. Mizuno, T. Mura and S. Uchida, Cryst. Growth Des., 2016, 16,
968–4974.
we demonstrated a facile synthesis method of d-Al -CoW by 15 K. Wen, J. Zhu, H. Chen, L. Ma, H. Liu, R. Zhu, Y. Xi and H. He,
4
13
12
Langmuir, 2019, 35, 382–390.
dissolution–recrystallization with the aid of NaCl. Consequently,
1
6 Y. Kinoshita, Y. Shimoyama, Y. Masui, Y. Kawahara, K. Arai,
T. Motohashi, Y. Noda and S. Uchida, Langmuir, 2020, 36,
6277–6285.
7 J. Zhu, L. Wang, J. Wang, F. Wang, M. Tian, S. Zheng, N. Shao,
L. Wang and M. He, ACS Nano, 2020, 14, 15306–15316.
8 S. Wang, S. Li, R. Shi, X. Zou, Z. Zhang, G. Fu, L. Li and F. Luo,
Dalton Trans., 2020, 49, 2559–2569.
we revealed that d-Al -CoW rather than e-Al -CoW is prefer-
13
12
13
12
able in acid-catalyzed pinacol rearrangement. The origin of the
enhanced catalytic activity was found to be an increase in
Brønsted acidity, which was characterized by the Al–O distances,
1
1
1
2
1
NBO charges of O atoms, solid-state H MAS NMR, and IR with
9 J. H. Son, Y.-U. Kwon and O. H. Han, Inorg. Chem., 2003, 42,
pyridine as a basic probe molecule. This work is a rare example of
rotational isomers exhibiting remarkably different catalytic activ-
ities, providing valuable information on the relationship among
the chemical state of Al13 cluster, acidity, and catalytic activity.
This discovery is expected to open new prospects for the develop-
ment of rotational isomers of Al13 clusters, not only as building
units of solid acids but also as functional materials for water
purification, proton conduction, and gas separation.
4153–4159.
0 C. M. Gillespie, D. Asthagiri and A. M. Lenhoff, Cryst. Growth Des.,
2014, 14, 46–57.
1 L. L. Murrell and N. C. Dispenziere, J. Catal., 1989, 117, 275–280.
2 Y. Kikukawa, S. Yamaguchi, Y. Nakagawa, K. Uehara, S. Uchida,
K. Yamaguchi and N. Mizuno, J. Am. Chem. Soc., 2008, 130,
15872–15878.
3 R. Kawahara, R. Osuga, J. N. Kondo, N. Mizuno and S. Uchida,
Dalton Trans., 2017, 46, 3105–3109.
4 P. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong, Shriver
and Atkins’ Inorganic Chemistry, Oxford University Press, 5th edn,
2
2
2
2
This work was supported by JSPS Grants-in-Aid for Scientific
Research from MEXT of Japan (JP20H02750 and JP21K14639),
the International Network on Polyoxometalate Science at
2009, ch. 4.
2
5 C. G. Liu, W. Guan, L. K. Yan, P. Song and Z. M. Su, Dalton Trans.,
2009, 6208–6213.
Hiroshima University, JSPS Core-to-Core program, and The 26 S. A. Hassan, H.-Y. Gu, Y. Fang, Y. Geng, L.-K. Yan and Z.-M. Su,
Chem. Phys. Lett., 2020, 748, 137348.
7 D. Freude, M. Hunger, H. Pfeifer and W. Schwieger, Chem. Phys.
University of Tokyo Advanced Characterization Nanotechnology
Platform in the Nanotechnology Platform Project (project num-
2
Lett., 1986, 128, 62–66.
ber: A-20-UT-0391). Prof. M. Sadakane (Hiroshima University) is 28 N. Ogiwara, H. Kobayashi, M. Inukai, Y. Nishiyama, P. Concepci o´ n,
F. Rey and H. Kitagawa, Nano Lett., 2020, 20, 426–432.
9 T. Barzetti, E. Selli, D. Moscotti and L. Forni, J. Chem. Soc., Faraday
Trans., 1996, 92, 1401–1407.
0 S. Noro, R. Tsunashima, Y. Kamiya, K. Uemura, H. Kita, L. Cronin,
T. Akutagawa and T. Nakamura, Angew. Chem., Int. Ed., 2009, 48,
acknowledged for the preliminary ESI-MS measurements.
2
3
Conflicts of interest
8703–8706.
There are no conflicts to declare.
31 E. P. Parry, J. Catal., 1963, 2, 371–379.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2021