Organic Letters
Letter
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Synthetic procedures, characterization data, and copies
1
of H and 13C NMR spectra (PDF)
Accession Codes
CCDC 1832265 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Figure 1. Effect of Peroxide 5 on larynx Hep-2, breast MDA-MB, and
cervix HeLa after a short incubation period with variable
concentrations of drug: (a) morphological changes induced in the
tumoral cells; (b) cell survival after treatments evaluated by the MTT
assays; (c) morphology of cell nuclei after treatments evaluated under
the fluorescence microscopy.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank MINECO (Grants CTQ2017-83309-P, CTQ2014-
53894-R, and FIS PI15/00974) for financial support.
■
We have also evaluated the changes induced in the cell and
nuclear morphology after treatments. Control HeLa and Hep-2
cells present a polygonal morphology, typical of keratinocytes,
while the features of the MDA-MB cells were more spindled.
These morphologies were maintained in cultures treated with
low drug concentrations and in control acetone (5%). In
incubations with drug concentrations of 2.5 × 10−7 M, cells
become rounded and detach from the substrate. Conversely,
with concentrations of 10−6 M, cells remained attached to the
well but exhibited an irregular shape. In this case, the 3D
structure of the cells seemed to be lost. Nuclear morphology
was evaluated 5 h after treatment with the highest
concentrations (5 × 10−7 M and 10−6 M). Whereas control
cells showed rounded nuclei and brilliant blue fluorescent
chromatin (after DAPI staining), treated cultures showed
nuclei with chromatin irregularly distributed forming highly
fluorescent discrete aggregates or with a very low or null blue
fluorescence, indicating a loss of the DNA content of the
nucleus (Figure 1c).
REFERENCES
■
(1) (a) Kharel, M. K.; Pahari, P.; Shepherd, M. D.; Tibrewal, N.;
Nybo, S. E.; Shaaban, K. A.; Rohr, J. Nat. Prod. Rep. 2012, 29, 264.
(b) Krohn, K.; Rohr, J. Top. Curr. Chem. 1997, 188, 127.
̃
(2) Carreno, M. C.; Urbano, A. Synlett 2005, 2005, 1.
(3) Baranczak, A.; Sulikowski, G. A. Angew. Chem., Int. Ed. 2009, 48,
6005.
(4) (a) Lebrasseur, N.; Fan, G.-J.; Oxoby, M.; Looney, M. A.;
Quideau, S. Tetrahedron 2005, 61, 1551. (b) Lebrasseur, N.; Fan, G.-
J.; Quideau, S. ARKIVOC 2004, 13, 5. (c) Kraus, G. A.; Wan, Z.
Tetrahedron Lett. 1997, 38, 6509. (d) Nicolas, T. E.; Franck, R. W. J.
Org. Chem. 1995, 60, 6904.
(5) (a) Krohn, K.; Frese, P. Tetrahedron Lett. 2001, 42, 681.
(b) Krohn, K.; Frese, P.; Florke, U. Chem. - Eur. J. 2000, 6, 3887.
(6) (a) Kusumi, S.; Nakayama, H.; Kobayashi, T.; Kuriki, H.;
Matsumoto, Y.; Takahashi, D.; Toshima, K. Chem. - Eur. J. 2016, 22,
18733. (b) Khatri, H. R.; Nguyen, H.; Dunaway, J. K.; Zhu, J. Chem. -
Eur. J. 2015, 21, 13553. (c) Matsumoto, T.; Yamaguchi, H.; Tanabe,
M.; Yasui, Y.; Suzuki, K. Tetrahedron Lett. 2000, 41, 8393.
(7) Carren
Eur. J. 2007, 13, 879 and references cited therein.
(8) Vila-Gisbert, S.; Urbano, A.; Carreno, M. C. Chem. Commun.
2013, 49, 3561.
̃
o, M. C.; Ribagorda, M.; Somoza, A.; Urbano, A. Chem. -
̃
In summary, we have discovered that the angular tetracyclic
phenols 3a−b can be directly transformed into the C12b
-
̃
́
́
(9) Carreno, M. C.; Gonzalez-Lopez, M.; Urbano, A. Angew. Chem.,
Int. Ed. 2006, 45, 2737−2740.
substituted hydroperoxides 4a−b by irradiation with blue
LEDs under air in acetone without the need of any added
photosensitizer. When irradiation of phenol 3a was effected in
CHCl3, a double oxidative dearomatization took place
incorporating two molecules of oxygen into the tetracyclic
structure of phenol 3a, in a very selective way, giving rise to the
double peroxide 5, whose anticancer properties were evaluated.
Our in vitro studies indicate the high ability of peroxide 5 to
induce lethality in different carcinoma cell lines.
(10) Udvarnoki, G.; Henkel, T.; Machinek, R.; Rohr, J. J. Org. Chem.
1992, 57, 1274.
(11) (a) Gorrini, C.; Harris, I. S.; Mak, T. W. Nat. Rev. Drug
Discovery 2013, 12, 931. (b) Raza, M. H.; Siraj, S.; Arshad, A.;
Waheed, U.; Aldakheel, F.; Alduraywish, S.; Arshad, M. J. Cancer Res.
Clin. Oncol. 2017, 143, 1789.
́
(12) Lombo, F.; Abdelfattah, M. S.; Brana, A. F.; Salas, J. A.; Rohr,
̃
́
J.; Mendez, C. ChemBioChem 2009, 10, 296.
(13) Kotani, H.; Ohkubo, K.; Fukuzumi, S. J. Am. Chem. Soc. 2004,
126, 15999.
D
Org. Lett. XXXX, XXX, XXX−XXX