5
58
M. Yamazaki et al.
Stoddart, J. F.; Goddard, W. A. An electrochemical color-switchable RGB dye:
Tristable [2]catenane. J. Am. Chem. Soc. 2005, 127, 15994–15995.
3
. (a) Ashton, P. R.; Balzani, V.; Credi, A.; Kocian, O.; Pasini, D.; Prodi, L.; Spencer, N.;
Stoddart, J. F.; Tolley, M. S.; Venturi, M.; White, A. J. P.; Williams, D. J. Molecular
meccano, 35: Cyclophanes and [2]catenanes as ligands for transition metal
complexes: Synthesis, structure, absorption spectra, and excited state and electrochemi-
cal properties. Chem. Eur. J. 1998, 4, 590–607; (b) Hu, Y.-Z.; Bossmann, S. H.; van
0
Loyen, D.; Schwarz, O.; D u¨ rr, H. A novel 2,2 -bipyridine[2]catenane and its
ruthenium complex: Synthesis, structure, and intramolecular electron transfer—A
model for the photosynthetic reaction center. Chem. Eur. J. 1999, 5, 1267–1277.
. Theil, A.; Mauve, C.; Adeline, M.-T.; Marinetti, A.; Sauvage, J.-P. Phosphorus-
containing [2]catenanes as an example of interlocking chiral structures. Angew.
Chem. 2006, 118, 2158–2161.
4
5
. (a) Hunter, C. A. Synthesis and structure elucidation of a new [2]-catenane. J. Am.
Chem. Soc. 1992, 114, 5303–5311; (b) V o¨ gtle, F.; Meier, S.; Hoss, R. One-step
synthesis of a fourfold functionalized catenane. Angew. Chem., Int. Ed. Engl. 1992,
3
1, 1619–1622; (c) Ottens-Hildebrandt, S.; Meier, S.; Schmidt, W.; V o¨ gtle, F.
Isomeric catenanes of lactam type and their formation mechanism. Angew. Chem.,
Int. Ed. Engl. 1994, 33, 1767–1770; (d) Johnston, A. G.; Leigh, D. A.; Nezhat, L.;
Smart, J. P.; Deegan, M. D. Structurally diverse and dynamically versatile benzylic
amide [2]catenanes assembled directly from commercially available precursors.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1212–1216; (e) Leigh, D. A.; Moody, K.;
Smart, J. P.; Watson, K. J.; Slawin, A. M. Z. Catenane chameleons: environment-
sensitive translational isomerism in amphiphilic benzylic amide [2]catenanes.
Angew. Chem., Int. Ed. Engl. 1996, 35, 306–310; (f) Kidd, T. J.; Leigh, D. A.;
Wilson, A. J. Organic “magic rings”: The hydrogen bond-directed assembly of
catenanes under thermodynamic control. J. Am. Chem. Soc. 1999, 121, 1599–1600;
(
g) Safarowsky, O.; Vogel, E.; V o¨ gtle, F. Amide-based [3]catenanes and
[2]catenanes with aliphatic chains. Eur. J. Org. Chem. 2000, 499–505.
6
. Furusho, Y.; Shoji, J.; Watanabe, N.; Kihara, N.; Adachi, T.; Takata, T. Chemical
modification of amide-based catenanes and rotaxanes I: Synthesis of secondary
amine [2]catenanes and [2]rotaxanes by the borane reduction of secondary
amide [2]catenanes and [2]rotaxanes and mobility of their components. Bull.
Chem. Soc. Jpn. 2001, 74, 139–147.
7
8
. Zeng, F.; Zimmerman, S. C. Rapid synthesis of dendrimers by an orthogonal
coupling strategy. J. Am. Chem. Soc. 1996, 118, 5326–5327.
. Herd, O.; Heßler, A.; Hingst, M.; Tepper, M.; Stelzer, O. Water soluble phos-
phines, VIII: Palladium-catalyzed P-C cross coupling reactions between primary
or secondary phosphines and functional aryl iodides—A novel synthetic route to
water-soluble phosphines. J. Organomet. Chem 1996, 522, 69–76.
9
. (a) Leigh, D. A.; Murphy, A.; Smart, J. P.; Slawin, A. M. Z. Glycylglycine rotaxanes—
The hydrogen bond directed assembly of synthetic peptide rotaxanes. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 728–732; (b) Seel, C.; Parham, A. H.; Safarowsky, O.;
H u¨ bner, G. M.; V o¨ gtle, F. How selective threading of amides through macrocylic
lactam wheels leads to rotaxane synthesis. J. Org. Chem. 1999, 64, 7236–7242.
1
1
0. Fustin, C.-A.; Bailly, C.; Clarkson, G. J.; Groote, P. D.; Galow, T. H.; Leigh, D. A.;
Robertson, D.; Slawin, A. M. Z.; Wong, J. K. Y. Mechanically linked polycarbo-
nate. J. Am. Chem. Soc. 2003, 125, 2200–2207.
1. Huff, B. E.; Koenig, T. M.; Mitchell, D.; Staszak, M. A. Synthesis of unsymmetri-
cal biaryls using a modified Suzuki cross-coupling: 4-Biphenylcarboxaldehyde.
Org. Synth. 1998, 75, 53–60.