Inorganic Chemistry
Article
(
27) Dai, F.; Li, Q.; Wang, Y.; Ge, C.; Feng, C.; Xie, S.; He, H.; Xu, X.;
(45) Reger, D. L.; Leitner, A. P.; Smith, M. D. Supramolecular Metal−
Organic Frameworks of s- and f-Block Metals: Impact of 1,8-
Naphthalimide Functional Group. Cryst. Growth Des. 2016, 16, 527−
536.
(46) Bonnet, C. S.; Devocelle, M.; Gunnlaugsson, T. Luminescent
lanthanide-binding peptides: sensitising the excited states of Eu(III)
and Tb(III) with a 1,8-naphthalimide-based antenna. Org. Biomol.
Chem. 2012, 10, 126−133.
(47) Reger, D. L.; Leitner, A.; Smith, M. D. Homochiral, Helical
Coordination Complexes of Lanthanides(III) and Mixed-Metal
Lanthanides(III): Impact of the 1,8-Naphthalimide Supramolecular
Tecton on Structure, Magnetic Properties, and Luminescence. Cryst.
Growth Des. 2015, 15, 5637−5644.
Wang, C. Design, Synthesis, and Biological Evaluation of Mitochon-
dria-Targeted Flavone−Naphthalimide−Polyamine Conjugates with
Antimetastatic Activity. J. Med. Chem. 2017, 60, 2071−2083.
(
28) Lee, M. H.; Kim, J. Y.; Han, J. H.; Bhuniya, S.; Sessler, J. L.; Kang,
C.; Kim, J. S. Direct Fluorescence Monitoring of the Delivery and
Cellular Uptake of a Cancer-Targeted RGD Peptide-Appended
Naphthalimide Theragnostic Prodrug. J. Am. Chem. Soc. 2012, 134,
1
2668−12674.
29) Brana, M. F.; Ramos, A. Naphthalimides as Anticancer Agents:
Synthesis and Biological Activity. Curr. Med. Chem.: Anti-Cancer Agents
001, 1, 237−255.
30) Hsiang, Y. H.; Jiang, J. B.; Liu, L. F. Topoisomerase II-mediated
DNA cleavage by amonafide and its structural analogs. Mol. Pharmacol.
989, 36, 371.
31) Li, Q.; Browne, W. R.; Roelfes, G. DNA Cleavage Activity of
(
2
(
(48) Zhang, J.; Li, H.; Chen, P.; Sun, W.; Gao, T.; Yan, P. A new
strategy for achieving white-light emission of lanthanide complexes:
effective control of energy transfer from blue-emissive fluorophore to
Eu(III) centres. J. Mater. Chem. C 2015, 3, 1799−1806.
1
(
Fe(II)N4Py under Photo Irradiation in the Presence of 1,8-
Naphthalimide and 9-Aminoacridine: Unexpected Effects of Reactive
Oxygen Species Scavengers. Inorg. Chem. 2011, 50, 8318−8325.
(49) Carter, A. B.; Zhang, N.; Kuhne, I. A.; Keene, T. D.; Powell, A. K.;
̈
Kitchen, J. A. Layered Ln(III) Complexes from a Sulfonate-Based 1,8-
Naphthalimide: Structures, Magnetism and Photophysics. Chemistry-
Select 2019, 4, 1850−1856.
(
32) Banerjee, S.; Veale, E. B.; Phelan, C. M.; Murphy, S. A.; Tocci, G.
M.; Gillespie, L. J.; Frimannsson, D. O.; Kelly, J. M.; Gunnlaugsson, T.
Recent advances in the development of 1,8-naphthalimide based DNA
targeting binders, anticancer and fluorescent cellular imaging agents.
Chem. Soc. Rev. 2013, 42, 1601−1618.
(50) Alcala, M. A.; Shade, C. M.; Uh, H.; Kwan, S. Y.; Bischof, M.;
Thompson, Z. P.; Gogick, K. A.; Meier, A. R.; Strein, T. G.; Bartlett, D.
L.; Modzelewski, R. A.; Lee, Y. J.; Petoud, S.; Brown, C. K. Preferential
accumulation within tumors and in vivo imaging by functionalized
luminescent dendrimer lanthanide complexes. Biomaterials 2011, 32,
9343−9352.
(
33) Chen, Z.; Liang, X.; Zhang, H.; Xie, H.; Liu, J.; Xu, Y.; Zhu, W.;
Wang, Y.; Wang, X.; Tan, S.; Kuang, D.; Qian, X. A New Class of
Naphthalimide-Based Antitumor Agents That Inhibit Topoisomerase
II and Induce Lysosomal Membrane Permeabilization and Apoptosis. J.
Med. Chem. 2010, 53, 2589−2600.
(51) Liu, W.; Chen, C.; Huang, X.; Xie, E.; Liu, W. Functional
construction of dual-emitting 4-aminonaphthalimide encapsulated
lanthanide MOFs composite for ratiometric temperature sensing.
Chem.Eur. J. 2019, 25, 10054
(
34) Joshi, R.; Mukherjee, D. D.; Chakrabarty, S.; Martin, A.; Jadhao,
M.; Chakrabarti, G.; Sarkar, A.; Ghosh, S. K. Unveiling the Potential of
Unfused Bichromophoric Naphthalimide To Induce Cytotoxicity by
Binding to Tubulin: Breaks Monotony of Naphthalimides as Conven-
tional Intercalators. J. Phys. Chem. B 2018, 122, 3680−3695.
(52) Plyusnin, V. F.; Kupryakov, A. S.; Grivin, V. P.; Shelton, A. H.;
Sazanovich, I. V.; Meijer, A. J. H. M.; Weinstein, J. A.; Ward, M. D.
Photophysics of 1,8-naphthalimide/Ln(III) dyads (Ln = Eu, Gd):
naphthalimide [rightward arrow] Eu(III) energy-transfer from both
singlet and triplet states. Photochem. Photobiol. 2013, 12, 1666−1679.
(53) Shelton, A. H.; Sazanovich, I. V.; Weinstein, J. A.; Ward, M. D.
Controllable Three-component Luminescence from a 1,8-naphthali-
mide/Eu(III) Complex: White Light Emission from a Single Molecule.
Chem. Commun. 2012, 48, 2749−2751.
(
35) Fang, Y.; Shi, W.; Hu, Y.; Li, X.; Ma, H. A dual-function
fluorescent probe for monitoring the degrees of hypoxia in living cells
via the imaging of nitroreductase and adenosine triphosphate. Chem.
Commun. 2018, 54, 5454−5457.
(
36) Zhang, L.; Duan, D.; Liu, Y.; Ge, C.; Cui, X.; Sun, J.; Fang, J.
Highly Selective Off−On Fluorescent Probe for Imaging Thioredoxin
Reductase in Living Cells. J. Am. Chem. Soc. 2014, 136, 226−233.
(54) de Sousa, M.; Kluciar, M.; Abad, S.; Miranda, M. A.; de Castro,
B.; Pischel, U. An Inhibit (INH) Molecular Logic Gate Based on 1,8-
naphthalimide-sensitised Europium Luminescence. Photochem. Photo-
biol. Sci. 2004, 3, 639−642.
(55) de Bettencourt-Dias, A.; Viswanathan, S.; Rollett, A. Thiophene-
derivatized pybox and its highly luminescent lanthanide ion complexes.
J. Am. Chem. Soc. 2007, 129, 15436−15437.
(56) de Bettencourt-Dias, A.; Barber, P. S.; Viswanathan, S.; de Lill, D.
T.; Rollett, A.; Ling, G.; Altun, S. para-Derivatized Pybox ligands as
sensitizers in highly luminescent Ln(III) complexes. Inorg. Chem. 2010,
49, 8848−8861.
(57) de Bettencourt-Dias, A. Introduction to Lanthanide Ion
Luminescence. In Luminescence of Lanthanide Ions in Coordination
Compounds and Nanomaterials; de Bettencourt-Dias, A., Ed.; Wiley:
2014.
(
37) Cai, Y.; Guo, Z.; Chen, J.; Li, W.; Zhong, L.; Gao, Y.; Jiang, L.;
Chi, L.; Tian, H.; Zhu, W.-H. Enabling Light Work in Helical Self-
Assembly for Dynamic Amplification of Chirality with Photo-
reversibility. J. Am. Chem. Soc. 2016, 138, 2219−2224.
(
38) Kalai, T.; Hideg, E.; Ayaydin, F.; Hideg, K. Synthesis and
potential use of 1,8-naphthalimide type 1O2 sensor molecules.
Photochem. Photobiol. Sci. 2013, 12, 432−438.
(
Furan Cycloadditions for the Synthesis of Anticancer Naphthalimides.
J. Org. Chem. 2018, 83, 4871−4881.
(
Efficient and Photostable Photosensitizer Based on BODIPY
Chromophore. J. Am. Chem. Soc. 2005, 127, 12162−12163.
(
39) Prevost, S.; Dezaire, A.; Escargueil, A. Intramolecular Aryne-
́
40) Yogo, T.; Urano, Y.; Ishitsuka, Y.; Maniwa, F.; Nagano, T. Highly
41) Ryan, G. J.; Quinn, S.; Gunnlaugsson, T. Highly Effective DNA
Photocleavage by Novel “Rigid” Ru(bpy)3−4-nitro- and −4-amino-
,8-naphthalimide Conjugates. Inorg. Chem. 2008, 47, 401−403.
42) Pina, J.; Seixas de Melo, J. S. A comprehensive investigation of the
electronic spectral and photophysical properties of conjugated
naphthalene-thiophene oligomers. Phys. Chem. Chem. Phys. 2009, 11,
(58) Dai, L.; Wu, D.; Qiao, Q.; Yin, W.; Yin, J.; Xu, Z. A
naphthalimide-based fluorescent sensor for halogenated solvents.
Chem. Commun. 2016, 52, 2095−2098.
(59) Ventura, B.; Bertocco, A.; Braga, D.; Catalano, L.; d’Agostino, S.;
Grepioni, F.; Taddei, P. Luminescence Properties of 1,8-Naphthalimide
Derivatives in Solution, in Their Crystals, and in Co-crystals: Toward
Room-Temperature Phosphorescence from Organic Materials. J. Phys.
Chem. C 2014, 118, 18646−18658.
(60) Middleton, R. W.; Parrick, J.; Clarke, E. D.; Wardman, P.
Synthesis and fluorescence of N-substituted-1,8-naphthalimides. J.
Heterocycl. Chem. 1986, 23, 849−855.
(61) Carnall, W. T.; Fields, P. R.; Rajnak, K. Electronic Energy Levels
of the Trivalent Lanthanide Aquo Ions. II. Gd3+. J. Chem. Phys. 1968,
49, 4443−4446.
1
(
8
(
706−8713.
43) Rangasamy, S.; Ju, H.; Um, S.; Oh, D.-C.; Song, J. M.
Mitochondria and DNA Targeting of 5,10,15,20-Tetrakis(7-
sulfonatobenzo[b]thiophene) Porphyrin-Induced Photodynamic
Therapy via Intrinsic and Extrinsic Apoptotic Cell Death. J. Med.
Chem. 2015, 58, 6864−6874.
(
44) Cho, U.; Riordan, D. P.; Ciepla, P.; Kocherlakota, K. S.; Chen, J.
K.; Harbury, P. B. Ultrasensitive optical imaging with lanthanide
lumiphores. Nat. Chem. Biol. 2018, 14, 15−21.
H
Inorg. Chem. XXXX, XXX, XXX−XXX