Page 9 of 10
ACS Catalysis
Weckhuysen, B. M. Surface- and Tip-Enhanced Raman
Spectroscopy in Catalysis. J. Phys. Chem. Lett. 2016, 7, 1570–
584.
Fang, P.-P.; Li, J.-F.; Yang, Z.-L.; Li, L.-M.; Ren, B.; Tian, Z.-Q.
Optimization of SERS Activities of Gold Nanoparticles and
Gold-Core-Palladium-Shell Nanoparticles by Controlling Size
and Shell Thickness. J. Raman Spectrosc. 2008, 39, 1679–
Phenylacetylene Hydrogenation with Pd, Pt and Pd-Pt Alloy
Catalysts Dispersed on Amorphous Supports: Effect of Pt/Pd
Ratio on Catalytic Activity and Selectivity. J. Mol. Catal. 1984,
26, 375–384.
Lindlar, H.; Dubuis, R. Palladium Catalyst for Partial
Reduction of Acetylenes. Org. Synth. 1966, 46, 89–92.
Li, J. F.; Tian, X. D.; Li, S. B.; Anema, J. R.; Yang, Z. L.; Ding, Y.;
Wu, Y. F.; Zeng, Y. M.; Chen, Q. Z.; Ren, B.; Wang, Z. L.; Tian, Z.
Q. Surface Analysis Using Shell-Isolated Nanoparticle-
Enhanced Raman Spectroscopy. Nat. Protoc. 2013, 8, 52–65.
Turkevich, J.; Stevenson, P. C. A Study of the Nucleation and
Growth Processes in the Synthesis of Colloidal Gold. Discuss.
Faraday Soc. 1951, 11, 55–75.
Cao, L.; Zhu, T.; Liu, Z. Formation Mechanism of Nonspherical
Gold Nanoparticles during Seeding Growth: Roles of Anion
Adsorption and Reduction Rate. J. Colloid Interface Sci. 2006,
293, 69–76.
Kobayashi, Y.; Correa-Duarte, M. A.; Liz-Marzán, L. M. Sol-Gel
Processing of Silica-Coated Gold Nanoparticles. Langmuir
2001, 17, 6375–6379.
1
2
1
(
7)
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(24)
(25)
1
687.
(
(
8)
9)
Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.;
Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y.; Yang, J. L.; Hou, J. G.
Chemical Mapping of a Single Molecule by Plasmon-Enhanced
Raman Scattering. Nature 2013, 498, 82–86.
Sigle, D. O.; Kasera, S.; Herrmann, L. O.; Palma, A.; De Nijs, B.;
Benz, F.; Mahajan, S.; Baumberg, J. J.; Scherman, O. A.
Observing Single Molecules Complexing with Cucurbit[7]Uril
through Nanogap Surface-Enhanced Raman Spectroscopy. J.
Phys. Chem. Lett. 2016, 7, 704–710.
Etchegoin, P. G.; Le Ru, E. C. A Perspective on Single Molecule
SERS: Current Status and Future Challenges. Phys. Chem.
Chem. Phys. 2008, 10, 6079.
Pozzi, E. A.; Zrimsek, A. B.; Lethiec, C. M.; Schatz, G. C.; Hersam,
M. C.; Van Duyne, R. P. Evaluating Single-Molecule Stokes and
Anti-Stokes SERS for Nanoscale Thermometry. J. Phys. Chem.
C 2015, 119, 21116–21124.
(26)
(27)
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
(
10)
11)
(28)
(29)
Ren, B.; Yao, J. L.; Li, X. Q.; Cai, W. B.; Mao, B. W.; Tian, Z. Q. A
New Progress in Surface Raman Spectroscopy of Platinum
Electrode Surfaces. Internet J. Vib. Spectrosc. 1996,
[www.ijvs.com] 1, 7.
Graham, G. W.; Weber, W. H.; McBride, J. R.; Peters, C. R.
Raman Investigation of Simple and Complex Oxides of
Platinum. J. Raman Spectrosc. 1991, 22, 1–9.
(
12)
Van Schrojenstein Lantman, E. M.; De Peinder, P.; Mank, A. J.
G.; Weckhuysen, B. M. Separation of Time-Resolved
Phenomena in Surface- Enhanced Raman Scattering of the
(30)
(31)
Photocatalytic
Reduction
of
p-Nitrothiophenol.
Mrozek, M. F.; Weaver, M. J. Periodic Trends in Electrode-
Chemisorbate Bonding: Ethylene on Platinum-Group and
Gold Electrodes as Probed by Surface-Enhanced Raman
Spectroscopy. J. Phys. Chem. B 2001, 105, 8931–8937.
Huang, Y. F.; Kooyman, P. J.; Koper, M. T. M. Intermediate
Stages of Electrochemical Oxidation of Single-Crystalline
Platinum Revealed by in Situ Raman Spectroscopy. Nat.
Commun. 2016, 7, 1–7.
Lin, W.; Herzing, A. A.; Kiely, C. J.; Wachs, I. E. Probing Metal-
Support Interactions under Oxidizing and Reducing
Conditions: In Situ Raman and Infrared Spectroscopic and
Scanning Transmission Electron Microscopic-X-Ray Energy-
Dispersive Spectroscopic Investigation of Supported
Platinum Catalysts. J. Am. Chem. Soc. 2008, 112, 5942–5951.
Williams, C. T.; Tolia, A. A.; Weaver, M. J.; Takoudis, C. G.
Surface-Enhanced Raman Spectroscopy as an In Situ Real-
Time Probe of No Reduction over Rhodium at High Gas
Pressures. Chem. Eng. Sci. 1996, 51, 1673–1682.
ChemPhysChem 2015, 16, 547–554.
Zhang, K.; Xu, N.; Jia, M.; Li, R.; Huang, M. In Situ Detection of
Hot-Electron-Induced Photocatalytic Reduction Using
(
(
13)
14)
Au@Ag, Au@Ag
2
S, and Au@SiO
2
Core-Shell Nanoparticles. J.
(32)
(33)
Appl. Phys. 2019, 125, 183101.
Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.;
Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.;
Tian, Z. Q. Shell-Isolated Nanoparticle-Enhanced Raman
Spectroscopy. Nature 2010, 464, 392–395.
Xie, W.; Walkenfort, B.; Schlücker, S. Label-Free SERS
Monitoring of Chemical Reactions Catalyzed by Small Gold
Nanoparticles Using 3D Plasmonic Superstructures. J. Am.
Chem. Soc. 2012, 135, 1657-1660.
Van Schrojenstein Lantman, E. M.; Gijzeman, O. L. J.; Mank, A.
J. G.; Weckhuysen, B. M. Investigation of the Kinetics of a
Surface Photocatalytic Reaction in Two Dimensions with
Surface-Enhanced Raman Scattering. ChemCatChem 2014, 6,
(15)
(16)
(34)
(35)
3
342–3346.
Li, J. F.; Anema, J. R.; Wandlowski, T.; Tian, Z. Q. Dielectric Shell
Isolated and Graphene Shell Isolated Nanoparticle Enhanced
Raman Spectroscopies and Their Applications. Chem. Soc. Rev.
2015, 44, 8399–8409.
(17)
Liu, Y.; Zhao, Y.; Zhang, L.; Yan, Y.; Jiang, Y. Controllable
Plasmon-Induced Catalytic Reaction by Surface-Enhanced
and Tip-Enhanced Raman Spectroscopy. Spectrochim. Acta -
Part A Mol. Biomol. Spectrosc. 2019, 219, 539–546.
Kumar, N.; Wondergem, C. S.; Wain, A. J.; Weckhuysen, B. M. In
Situ Nanoscale Investigation of Catalytic Reactions in the
Liquid Phase Using Zirconia-Protected Tip-Enhanced Raman
Spectroscopy Probes. J. Phys. Chem. Lett. 2019, 10, 1669–
(36)
(37)
Socrates, G. Infrared and Raman Characteristic Group
rd
(
18)
Frequencies, 3 ed.; John Wiley & Sons Ltd: Chichester,
England, 2001.
Shen, W.; Lin, X.; Jiang, C.; Li, C.; Lin, H.; Huang, J.; Wang, S.; Liu,
G.; Yan, X.; Zhong, Q.; Ren, B. Reliable Quantitative SERS
Analysis Facilitated by Core-Shell Nanoparticles with
Embedded Internal Standards. Angew. Chemie - Int. Ed. 2015,
54, 7308–7312.
Ando, J.; Asanuma, M.; Dodo, K.; Yamakoshi, H.; Kawata, S.;
Fujita, K.; Sodeoka, M. Alkyne-Tag SERS Screening and
Identification of Small-Molecule-Binding Sites in Protein. J.
Am. Chem. Soc. 2016, 138, 13901–13910.
Weckhuysen, B. M. Catalysts Live and up Close. Nature 2006,
439, 548.
Jang, Y. H.; Hwang, S.; Oh, J. J.; Joo, S. W. Adsorption Change of
Cyclohexyl Acetylene on Gold Nanoparticle Surfaces. Vib.
Spectrosc. 2009, 51, 193–198.
Joo, S. W.; Kim, K. Adsorption of Phenylacetylene on Gold
Nanoparticle Surfaces Investigated by Surface-Enhanced
Raman Scattering. J. Raman Spectrosc. 2004, 35, 549–554.
Kennedy, D. C.; McKay, C. S.; Tay, L.; Rouleau, Y.; Pezacki, J. P.
Carbon-Bonded Silver Nanoparticles: Alkyne-Functionalized
Ligands for SERS Imaging of Mammalian Cells. Chem.
Commun. 2011, 47, 3156–3158.
1
675.
(19)
(20)
Zhang, H.; Zhang, X. G.; Wei, J.; Wang, C.; Chen, S.; Sun, H. L.;
Wang, Y. H.; Chen, B. H.; Yang, Z. L.; Wu, D. Y.; Li, J. F.; Tian, Z.
Q. Revealing the Role of Interfacial Properties on Catalytic
Behaviors by in Situ Surface-Enhanced Raman Spectroscopy.
J. Am. Chem. Soc. 2017, 139, 10339–10346.
Zhang, H.; Wang, C.; Sun, H. L.; Fu, G.; Chen, S.; Zhang, Y. J.;
Chen, B. H.; Anema, J. R.; Yang, Z. L.; Li, J. F.; Tian, Z. Q. In Situ
Dynamic Tracking of Heterogeneous Nanocatalytic Processes
(38)
(39)
(40)
by
Spectroscopy. Nat. Commun. 2017, 8, 1–8.
Hartman, T.; Weckhuysen, B. M. Thermally Stable TiO
SiO -Shell-Isolated Au Nanoparticles for In Situ Plasmon-
Shell-Isolated
Nanoparticle-Enhanced
Raman
(
21)
2
- and
2
(41)
(42)
Enhanced Raman Spectroscopy of Hydrogenation Catalysts.
Chem. - A Eur. J. 2018, 24, 3734–3741.
Hartman, T.; Wondergem, C.; Weckhuysen, B. M. Practical
Guidelines for Shell-Isolated Nanoparticle-Enhanced Raman
Spectroscopy of Heterogeneous Catalysts. ChemPhysChem
(22)
2018, 19, 2461–2467.
(
23)
Carturan, G.; Cocco, G.; Facchin, G.; Navazio, G.
(43)
Sohn, Y.; Wei, W.; White, J. M. Phenylacetylene on Cu(111):
ACS Paragon Plus Environment