P. Hemalatha et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 109 (2013) 1–7
7
balance between competing molecular and supramolecular CT ef-
fects, thus to create SHG active material which is 45% efficiency
of standard NLO material.
Acknowledgments
The authors thank Prof. E.M. Subramanian, Department of
Chemistry, Pachaiyappas College for Men, Kanchipuram, Tamil
Nadu, India, for valuable discussions. The authors are thankful to
Sophisticated Analytical Instrumentation Facility (SAIF), IIT Ma-
dras, Chennai, and NIT, Trichy for recording spectral
measurements.
Appendix A. Supplementary material
Fig. 7. Thermogram (TGA/DTA) of SBTN crystal.
sphere. The SBTN sample weighing 6.698 mg was taken for the
analysis and the thermogram is illustrated in Fig. 7. The material
is moisture free and stable up to 190 °C with the elimination of
References
[
1] R.F. Belt, G. Gashurov, Y.S. Liu, Laser Focus 10 (1985) 110–114.
2
NO gaseous product. The DTA reveals exactly same changes
[2] R.S. Clark, Photonics Spectra 22 (1988) 135–140.
[
[
3] Bull. Gambino, Mater. Res. Soc. 15 (1990) 20–24.
4] S.P. Velsko, L.E. Davis, E. Wang, S. Monaco, D. Eimerl, Proc. Soc. Photo-Opt.
Instrum. Eng. 824 (1988) 178–182.
shown by TGA. This represents the absence of water molecule
and moisture in the sample. The melting point of the sample is
found to be 190 °C. Thermo-gravimetric results confirm the melt-
ing point and also indicate the single stage of weight loss starts
at 196 °C without any intermediate stages. The compound is ex-
pected to evaporate at the same temperature thereby the loss in
its weight is justified.
[5] N.J. Long, Chem. Int. Ed. Engl. 34 (1995) 21–25.
[
[
[
6] M.M. Fejer, Phys. Today 25 (1994) 57–61.
7] D.M. Burland, Chem. Rev. 94 (1994) 1–2.
8] B.L. Davydov, L.D. Derkacheva, V.V. Dunina, L.G. Koreneva, M.A. Samokhina,
M.E. Zhabotinskii, V.F. Zolin, JEPT Lett. 12 (1970) 16–19.
9] J.L. Oudar, J. Zyss, Phys. Rev. A 26 (1982) 2028–2033.
[
[
[
10] J.L. Oudar, J. Chem. Phys. 67 (1977) 446–449.
11] S.J. Lalama, A.F. Garito, Phys. Rev. A 20 (1979) 1179–1184.
Non-linear optical analysis
[12] A.C. Albrecht, A. Morell, Chem. Phys. Lett. 64 (1979) 46–51.
[
13] V. Zavodnik, A. Stash, V. Tsirelson, R. de Vries, D. Feil, Acta Crystallogr. B 55
1999) 45–54.
14] L.J. Farrugia, P.R. Mallinson, B. Stewart, Acta Crystallogr. B 59 (2003) 234–247.
(
The NLO efficiency of grown SBTN crystal was measured using
Kurtz powder technique [25]. It consists of an Nd: YAG passively
Q-switched laser of wavelength 1064 nm whose beam is focused
onto a thin section of the material powder contained in a 3 mm
cuvette. The specifications of the laser source used are 9 J pulse en-
ergy, 100 mW peak power, 8.62 kHz repetition rate and pulse
width 860 ps. Urea crystal was used as reference material in SHG
measurement. The samples used for SHG were obtained from the
powdered SBTN crystal with uniform particle size. The efficiency
of this material is 0.45 times that of urea.
[
[15] V. Langer, D. Gyepesova, E. Scholtzova, J. Luston, J. Kronek, M. Koos, Acta
Crystallogr. C 62 (2006) 416–418.
[
[
[
16] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–790.
17] A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652.
18] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994)
1623–1626.
[
19] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
Jr., J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski,
P.Y.Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G.
Zakrzewski,S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D.
Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S.
Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong,
C. Gonzalez, J.A. Pople, Gaussian 03, 2004, Gaussian Inc, Wallingford CTPA,
Conclusion
1
The single crystal of SBTN is monoclinic with space group P2 /c
and it exhibits second-order NLO susceptibility due to intermolec-
ular hydrogen bonding. The geometry of the crystal was analyzed
by X-ray diffraction studies and compared with DFT methods.
2001.
The better linearity in the NH
2
with NO
3
bond may have aided
[20] P. Hemalatha, V. Veeravazhuthi, Acta Crystallogr. E Acta Cryst. E64 (2008)
o1805.
for large charge transfer and charge transfer energy. The presence
of functional groups and their characteristics of SBTN crystal have
been identified by FTIR and NMR spectral studies. The optical
transmittance was studied using UV–Vis spectrum and lower cut
off at 200 nm makes the crystal for NLO applications. The thermal
analysis shows the grown crystal is thermally stable up to 208 C.
The hydrogen bonding present in SBTN helps to create the delicate
[
[
21] U. Kock, P.L.A. Popelier, J. Phys. Chem. A 99 (1995) 9747–9750.
22] E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, Computer code NBO,
version 3.1.
[
[
[
23] S. Gunasekaran, S. Kumaresan, R. Arunbalaji, G. Anand, S. Seshadri, S. Muthu, J.
Raman Spectrosc. 40 (11) (2009) 1675–1681.
24] X.H. Zhang, L.Y. Wang, G.H. Zhai, Z.Y. Wen, Z.X. Zhang, J. Mol. Struct. 881
(2008) 117–122.
25] S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39 (1968) 3798–3813.