T. Raghavendra et al. / Journal of Molecular Catalysis B: Enzymatic 63 (2010) 31–38
37
H. Lund, K.M. Oxenboll, G.F. Wu, H.H. Pedersen, H. Xu, in: S. Scheper, R. Ulber,
D. Sell (Eds.), Industrial Enzymes, Springer-Verlag, White Biotechnology, Hei-
delberg: Berlin, 2006, pp. 59–132.
[3] A.M. Klibanov, Nature 409 (2001) 241–246.
[4] A.M. Klibanov, Curr. Opin. Biotechnol. 14 (2003) 427–431.
[5] A. Schmid, J.S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, B. Witholt, Nat. Rev.
409 (2001) 258–268.
[6] S. Torres, G.R. Castro, Food Technol. Biotechnol. 42 (2004) 271–277.
[7] B.G. Davis, V. Boyer, Nat. Prod. Rep. 18 (2001) 618–640.
[8] M.V. Sergeeva, V.V. Mozhaev, J.O. Rich, Y.L. Khmelnitsky, Biotechnol. Lett. 22
(2000) 1419–1422.
[9] M.S. de Castro, M.P. Domˇıınguez, J.V. Sinisterra, Tetrahedron 56 (2000)
1387–1391.
[10] M.P. Domˇıınguez, F. Martˇıınez-Alzamora, M.S. Pérez, F. Valero, M.L. Rúa, J.M.
Sánchez-Montero, Enzyme Microb. Technol. 31 (2002) 283–288.
[11] M. Martinelle, M. Holmquist, K. Hult, Biochim. Biophys. Acta 1258 (1995)
272–276.
[12] P. Reis, K. Holmberg, R. Miller, M.E. Leser, T. Raab, H.J. Watzke, C. R. Chim. 12
(2009) 163–170.
[13] N.N. Gandhi, J. Am. Oil Chem. Soc. Rev. 74 (1997) 621–634.
[14] A. Houde, A. Kademi, D. Leblanc, Appl. Biochem. Biotechnol. 118 (2004)
155–170.
[15] R. Margesin, D. Labbe, F. Schinner, C.W. Greer, L.G. Whyte, Appl. Environ. Micro-
biol. 69 (2003) 3085–3092.
[16] P.S.J. Cheetham, Adv. Biochem. Eng./Biotechnol. 55 (1997) 1–49.
[17] M. Rizzi, P. Stylos, A. Riek, M. Reuss, Enzyme Microb. Technol. 14 (1992)
709–714.
Fig. 6. Thermostability of free and immobilized lipase at 50, 60 and 70 ◦C after prein-
cubation for 1–10 h. Esterification was carried out at 37 ◦C and 150 rpm for 8 days.
The solid lines represent immobilized lipase and the dotted lines represent free
lipase.
[18] J. Schrader, M.M.W. Etschmann, D. Sell, J.M. Hilmer, J. Rabenhorst, Biotechnol.
Lett. 26 (2004) 463–472.
[19] V.M. Balcao, A.L. Paiva, F.X. Malcata, Enzyme Microb. Technol. 18 (1996)
392–416.
innate stability of the enzyme along with the fortification offered
by immobilization.
This also signifies that in organogels, the enzyme molecules are
not only physically entrapped but also form additional bonds with
the water and gelatin networking molecules providing it strong
protection from harsh temperatures. This paves way for a variety of
processes requiring high temperatures and also reduces/eliminates
chances of contamination (if any) and viscosity.
[20] B. Chen, J. Hu, E.M. Miller, W. Xie, M. Cai, R.A. Gross, Biomacromolecules 9 (2008)
463–547.
ˇ
[21] Z.D. Knezˇevic´, S.S. Siler-Marinkovic´, L.V. Mojovic´, APTEFF Rev. 35 (2004)
1–280.
[22] V. Minovska, E. Winkelhausen, S. Kuzmanova, J. Serb. Chem. Soc. 70 (2005)
609–624.
[23] P.J. Atkinson, M.J. Grimsom, R.K. Heenan, A.M. Howe, B.H. Robinson, J. Chem.
Soc. Chem. Commun. 23 (1989) 1807–1809.
[24] P.J. Atkinson, B.H. Robinson, A.M. Howe, R.K. Heenan, J. Chem. Soc. Faraday
Trans. 87 (1991) 3389–3397.
[25] J.P. Chen, J. Ferment. Bioeng. 82 (1996) 404–407.
[26] T. Garcia, N. Sanchez, M. Martinez, J. Aracil, Enzyme Microb. Technol. 25 (1999)
591–597.
[27] G. Langrand, N. Rondot, C. Triantaphylides, J. Baratti, Biotechnol. Lett. 12 (1990)
581–586.
[28] M.K. Châabouni, H. Ghamgui, S. Bezzine, A. Rekik, Y. Gargouri, Process Biochem.
41 (2006) 1692–1698.
[29] S. Lamer, D. Leblanc, A. Morin, S. Kermasha, Biotechnol. Technol. 10 (1996)
475–478.
[30] D. Leblanc, A. Morin, D. Gu, X.M. Zhang, J.G. Bisaillon, M. Paquet, H. Dubeau,
Biotechnol. Lett. 20 (1998) 1127–1131.
[31] G.A. Burdock, G. Fenaroli, Fenaroli’s Handbook of Flavor Ingredients, third ed.,
CRC Press, 2004.
[32] V. Dandavate, D. Madamwar, Enzyme Microb. Technol. 41 (2007) 265–270.
[33] P.L. Luisi, L.J. Magid, CRC Crit. Rev. Biochem. 20 (1986) 409–474.
[34] S.-Y. Han, Z.-Y. Pan, D.-F. Huang, M. Ueda, X.-N. Wang, Y. Lin, J. Mol. Catal. B:
Enzyme 59 (2009).
[35] J. Kobayashi, Y. Mori, S. Kobayashi, Chem. Commun. 40 (2006) 4227–4229.
[36] G.D. Rees, M.G. Nascimento, T.R.J. Jenta, B.H. Robinson, Biochim. Biophys. Acta
1073 (1991) 493–501.
[37] H. Stamatis, A. Xenakis, J. Mol. Catal. B: Enzyme 6 (1999) 399–406.
[38] S. Kantaria, G.D. Rees, M.J. Lawrence, Int. J. Pharm. 250 (2003) 65–83.
[39] J. Schlatmann, M.R. Aires-barros, J.M.S. Cabral, Biocatal. Biotransform. 5 (1991)
137–144.
[40] M. Zoumpanioti, P. Parmaklis, M.P. Dominguez, H. Stamatis, J.V. Sinisterra, A.
Xenakis, Biotechnol. Lett. 30 (2008) 1627–1631.
[41] V. Dandavate, D. Madamwar, J. Microb. Biotechnol. 18 (2008) 735–741.
[42] T.R.J. Jenta, G. Batts, G.D. Rees, B.H. Robinson, Biotechnol. Bioeng. 53 (1997)
121–131.
[43] E. Ruckenstein, G. Xu, Biotechnol. Technol. 6 (1992) 555–560.
[44] P.A. Fitzpatrick, A.C.U. Steinmetzt, D. Ringet, A.M. Klibanov, Proc. Natl. Acad.
Sci. U.S.A. 90 (1993) 8653–8657, Early Ed.
[45] F. Monot, F. Borzeix, M. Bardin, J.P. Vandecasteele, Appl. Microbiol. Biotechnol.
35 (1991) 759–765.
4. Conclusion
Production of ethyl valerate by condensation of ethyl alco-
hol and valeric acid was performed using CRL immobilized
in MBGs under nearly non-aqueous conditions. AOT proved to
be the ideal surfactant for organogels among other surfactants
yielding as high as 98–99% product under optimum conditions.
Gelatin was the gelling agent of choice due to the stronger,
stable organogels and higher esterification rates. The combi-
nation of the two organic solvents viz. isooctane as reverse
micellar constituent and cyclohexane as reaction medium exhib-
ited highest yield. Polar solvents such as acetonitrile and DMSO
showed their non-applicability in this area of catalysis by their
deleterious effects on MBGs and the reaction. The optimum tem-
perature for this reaction was found to be 40 ◦C for MBGs. The
enzyme showed high activities at acidic to neutral pH (5–7),
pH 7 being the optimum while a steep decline was seen in
basic pH (8–8.8). The ratio of acid:alcohol for maximum ester
production and complete substrate utilization corresponded to
1:1.6 while higher ethanol concentrations displayed substrate
inhibition. The organogels could be reused for 9 cycles with
excellent activity retention. Also, they were highly stable at
50, 60 and 70 ◦C for 1–10 h of incubation prior to reaction.
This confirms the staturation of microemulsion based organogels
in non-aqueous enzymology, especially in production of flavor
esters.
Acknowledgment
[46] L.M.Z. Aguiar, M.G. Nascimento, G.E. Prudencio, M.C. Rezende, R.D. Vecchia,
Quim. Nova 16 (1993) 414–415.
[47] R. Dave, D. Madamwar, Process Biochem. 43 (2008) 70–75.
[48] K. Soni, D. Madamwar, Process Biochem. 36 (2001) 607–612.
[49] Y. Yesiloglu, I. Kilic, J. Am. Oil Chem. Soc. 81 (2004) 281–284.
[50] S. Gogoi, M.G. Pathak, A. Dutta, N.N. Dutta, Indian J. Biochem. Biophys. 45 (2008)
192–197.
[51] D.G. Hayes, E. Gulari, Biotechnol. Bioeng. 35 (1990) 793–801.
[52] B.R. Somashekar, S. Divakar, Enzyme Microb. Technol. 40 (2006)
299–309.
Authors acknowledge University Grants Commission, New
Delhi, India for financial support.
References
[1] M. Adamczak, S.H. Krishna, Food Technol. Biotechnol. 42 (2004) 251–264.
[2] T. Schafer, T.V. Borchert, V.S. Nielsen, P. Skagerlind, K. Gibson, K. Wenger, F.
Hatzack, L.D. Nilsson, S. Salmon, S. Pedersen, H.P. Heldt-Hansen, P.B. Poulsen,
[53] M.T.N. Petersen, P. Fojan, S.B. Petersen, J. Biotechnol. 85 (2001) 115–147.