10.1002/anie.202103705
Angewandte Chemie International Edition
RESEARCH ARTICLE
explaining its longest t1/2 in this series. The higher stability of Z-3-
5 than Z-5-5 was probably attributed to the relatively stronger
stabilizing effect of intramolecular C–H···N hydrogen bond in
planar Z-3-5. For the other three molecules (4-4, 3-4, and 3-3),
their Z-isomers displayed similar NCI surfaces, and their TSs
faced the same situation, which made it difficult to qualify the
difference in their energy barriers through NCI pictures. Indeed,
ΔG‡ of their considered conformers were only slightly different
(ΔG‡ – ΔG‡ = 1.0 kJ/mol, ΔG‡ – ΔG‡ = 2.6 kJ/mol).
Interestingly, for the TSs, a dispersive interaction between the
N-methyl and adjacent C–H group on 3-pyrazole was observed,
whereas this interaction on 4-pyrazole was negligible. This might
contribute to the lower ΔG‡ of the molecules with more 3-
pyrazole units.
Conflict of interest
The authors declare no competing financial interest.
Keywords: azobenzene • heterocycle • molecular photoswitch •
photoisomerization • pyrazole
[1]
a) W. Szymański, J. M. Beierle, H. A. V. Kistemaker, W. A. Velema, B.
L. Feringa, Chem. Rev. 2013, 113, 6114-6178; b) K. Glusac, Nat.
Chem. 2016, 8, 734-735; c) M. Baroncini, S. Silvi, A. Credi, Chem. Rev.
2020, 120, 200-268; d) M. Kathan, S. Hecht, Chem. Soc. Rev. 2017, 46,
5536-5550; e) J. Zhang, Q. Zou, H. Tian, Adv. Mater. 2013, 25, 378-
399; f) A. Goulet-Hanssens, F. Eisenreich, S. Hecht, Adv. Mater. 2020,
32, 1905966; g) L. Wang, Q. Li, Chem. Soc. Rev. 2018, 47, 1044-1097;
h) X. Huang, T. Li, J. Mater. Chem. C 2020, 8, 821-848; i) C. Sun, C.
Wang, R. Boulatov, ChemPhotoChem 2019, 3, 268-283; j) W. Xu, S.
Sun, S. Wu, Angew. Chem. Int. Ed. 2019, 58, 9712-9740.
4-4
3-4
3-4
3-3
Conclusion
[2]
[3]
a) A. H. Gelebart, D. Jan Mulder, M. Varga, A. Konya, G. Vantomme, E.
W. Meijer, R. L. B. Selinger, D. J. Broer, Nature 2017, 546, 632-636; b)
T. Ube, T. Ikeda, Angew. Chem. Int. Ed. 2014, 53, 10290-10299.
a) J. Broichhagen, J. A. Frank, D. Trauner, Accounts Chem. Res. 2015,
48, 1947-1960; b) F. Riefolo, C. Matera, A. Garrido-Charles, A. M. J.
Gomila, R. Sortino, L. Agnetta, E. Claro, R. Masgrau, U. Holzgrabe, M.
Batlle, M. Decker, E. Guasch, P. Gorostiza, J. Am. Chem. Soc. 2019,
141, 7628-7636.
In conclusion, we have designed and investigated a family of
azobispyrazoles as new bis-heteroaryl azo photoswitches. All six
members show excellent bidirectional E ⇆ Z photoconversion,
and their Z-isomer t1/2 cover a wide range of timescales including
years, months, weeks, days, and hours. Azobispyrazole system
bearing 5-pyrazole moiety shows higher π-conjugation, so the π-
π* λmax of E-isomer follows the order of 5-5 > 3(4)-5 > 3(4)-3(4).
5-5 can be used as a bidirectionally visible-light-activated
photoswitch. The linkage pattern also directs the thermal back-
isomerization kinetics, and t1/2 follow the order of 4-4 > 3-4 > 3-3
> 4-5 > 3-5 > 5-5. This can be explained by the different
intramolecular stabilizing interactions brought by 4-, 3-, 5-
pyrazole units in TSs and Z-isomers.
We reveal that the two five-membered rings on Het-N=N-Het
architecture can remarkably weaken the intramolecular steric
hindrance compared with phenyl ring(s) on Ph-N=N-Ph and Ph-
N=N-Het. This brings new possibilities for engineering the
geometric and electronic structure of azo photoswitches. Z-
azobispyrazoles generally adopt a twisted geometry, which
favors n-π* absorption strength and facilitates complete Z→E
photoisomerization. Moreover, the twisted Z-isomers provide
widely tunable thermal t1/2 without compromising the
photoisomerization yields. This overcomes the inherent conflict
between effective Z→E photoisomerization (favored by twisted
shape) and Z-isomer stability (favored by T shape) that exists in
the Ph-N=N-Het class based on five-membered N-heterocycles
(imidazole, pyrazole, pyrrole, triazole, and tetrazole). Therefore,
azobispyrazoles show great potential in developing high-
performance photocontrollable systems and can inspire the
rational design of new photoswitches making use of Het-N=N-
Het architecture.
[4]
a) L. Dong, Y. Feng, L. Wang, W. Feng, Chem. Soc. Rev. 2018, 47,
7339-7368; b) S. Wu, H. J. Butt, Macromol. Rapid Comm. 2020, 41,
1900413; c) Z. Zhang, Y. He, Z. Wang, J. Xu, M. Xie, P. Tao, D. Ji, K.
Moth-Poulsen, T. Li, J. Am. Chem. Soc. 2020, 142, 12256-12264; d) Z.
Wang, R. Losantos, D. Sampedro, M. Morikawa, K. Börjesson, N.
Kimizuka, K. Moth-Poulsen, J. Mater. Chem. A 2019, 7, 15042-15047.
a) W. Lin, M. Tsai, R. Rajappa, R. H. Kramer, J. Am. Chem. Soc. 2018,
140, 7445-7448; b) R. J. Mart, R. K. Allemann, Chem. Commun. 2016,
52, 12262-12277.
[5]
[6]
S. Hvilsted, C. Sánchez, R. Alcalá, J. Mater. Chem. 2009, 19, 6641-
6648.
[7]
[8]
G. S. Hartley, Nature 1937, 140, 281.
a) H. M. D. Bandara, S. C. Burdette, Chem. Soc. Rev. 2012, 41, 1809-
1825; b) E. Merino, Chem. Soc. Rev. 2011, 40, 3835-3853.
[9]
a) O. Sadovski, A. A. Beharry, F. Zhang, G. A. Woolley, Angew. Chem.
Int. Ed. 2009, 48, 1484-1486; b) A. A. Beharry, O. Sadovski, G. A.
Woolley, J. Am. Chem. Soc. 2011, 133, 19684-19687; c) D. Bléger, J.
Schwarz, A. M. Brouwer, S. Hecht, J. Am. Chem. Soc. 2012, 134,
20597-20600; d) H. A. Wegner, Angew. Chem. Int. Ed. 2012, 51, 4787-
4788; e) S. Samanta, T. M. McCormick, S. K. Schmidt, D. S. Seferos, G.
A. Woolley, Chem. Commun. 2013, 49, 10314-10316; f) M. Dong, A.
Babalhavaeji, S. Samanta, A. A. Beharry, G. A. Woolley, Accounts
Chem. Res. 2015, 48, 2662-2670; g) M. J. Hansen, M. M. Lerch, W.
Szymanski, B. L. Feringa, Angew. Chem. Int. Ed. 2016, 55, 13514-
13518; h) L. N. Lameijer, S. Budzak, N. A. Simeth, M. J. Hansen, B. L.
Feringa, D. Jacquemin, W. Szymanski, Angew. Chem. Int. Ed. 2020, 59,
21663-21670.
[10] S. Crespi, N. A. Simeth, B. König, Nature Reviews Chemistry 2019, 3,
133-146.
[11] a) Y. Wang, X. Ge, G. Schull, R. Berndt, H. Tang, C. Bornholdt, F.
Koehler, R. Herges, J. Am. Chem. Soc. 2010, 132, 1196-1197; b) S.
Venkataramani, U. Jana, M. Dommaschk, F. D. Sönnichsen, F. Tuczek,
R. Herges, Science 2011, 331, 445.
Acknowledgements
[12] a) E. Procházková, L. Čechová, J. Kind, Z. Janeba, C. M. Thiele, M.
Dračínský, Chem. Eur. J. 2018, 24, 492-498; b) Y. Xu, C. Gao, J.
Andréasson, M. Grøtli, Org. Lett. 2018, 20, 4875-4879.
This work was supported by the National Key Research and
Development Program of China (2017YFA0207500), National
Natural Science Foundation of China (22022507, 51973111),
[13] a) J. Otsuki, K. Suwa, K. K. Sarker, C. Sinha, J. Phys. Chem. A 2007,
111, 1403-1409; b) T. Wendler, C. Schütt, C. Näther, R. Herges, J. Org.
Chem. 2012, 77, 3284-3287.
Beijing
National
Laboratory
for
Molecular
Sciences
(BNLMS202004) and China Postdoctoral Science Foundation
(2020M681279). We acknowledge the Instrumental Analysis
Center of Shanghai Jiao Tong University, especially the help of
Dr. Lingling Li for single-crystal XRD analysis.
[14] a) C. E. Weston, R. D. Richardson, P. R. Haycock, A. J. P. White, M. J.
Fuchter, J. Am. Chem. Soc. 2014, 136, 11878-11881; b) J. Calbo, C. E.
Weston, A. J. P. White, H. S. Rzepa, J. Contreras-García, M. J. Fuchter,
J. Am. Chem. Soc. 2017, 139, 1261-1274.
7
This article is protected by copyright. All rights reserved.