3
702
E. Torres et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3699–3703
Table 2
Supplementary data
c log P, molecular weight (MW), number of H bond donors, H bond acceptors and
drug-likeness value for compounds (3a–3g)
Compound c log Pa H bond
H bond
acceptors
Molecular
weight
Drug-
likeness
a
donors
3
3
3
3
3
3
3
a
b
c
d
e
f
1.66
2.27
1.56
2.28
1.98
1.72
2.42
1
1
1
1
1
1
1
6
6
6
6
6
6
6
323.31
353.33
337.33
351.36
357.75
341.30
391.30
4.41
3.34
4.84
4.46
4.54
3.13
À2.29
References and notes
1.
2.
3.
4.
Lonnroth, K.; Castro, K. G.; Chakaya, J. M.; Chauhan, L. S.; Floyd, K.; Glaziou, P.;
Raviglione, M. C. Lancet 2010, 375, 1814.
g
a
Theoretical calculated values using Osiris program.
5.
6.
7.
Dye, C.; Williams, B. G.; Espinal, M. A.; Raviglione, M. C. Science 2002, 295, 2042.
Caminero, J. A. Int. J. Tuberc. Lung. Dis. 2010, 14, 382.
Lluis Ballell, R. A. F.; Duncan, K.; Young, R. J. Antimicrob. Agents Chemother. 2005,
4
9, 2153.
8
9
.
Gandhi, N. R.; Nunn, P.; Dheda, K. H.; Schaaf, S.; Zignol, M.; Van Soolingen, D.;
Jensen, P.; Bayona, J. Lancet 2010, 375, 1830.
Ahmad, S.; Mokaddas, E. Respir. Med. 2009, 103, 1777.
Currently, there are many approaches that assess a compound’s
drug-likeness partially based on topological descriptors, finger-
prints of molecular drug-likeness structure keys or other proper-
ties as c log P and molecular weights. In this work we calculated
various physicochemical parameters using Osiris Property
.
10. Ginsberg, A. M. Tuberculosis (Edinb) 2010, 90, 162.
1
1
1. Barry, C. E., 3rd; Blanchard, J. S. Curr. Opin. Chem. Biol. 2010, 14, 456.
2. Mantu, D.; Luca, M. C.; Moldoveanu, C.; Zbancioc, G.; Mangalagiu, I. I. Eur. J.
Med. Chem. 2010, 45, 5164.
5
2,53
Explorer.
13. Singh, R.; Manjunatha, U.; Boshoff, H. I.; Ha, Y. H.; Niyomrattanakit, P.;
Ledwidge, R.; Dowd, C. S.; Lee, I. Y.; Kim, P.; Zhang, L.; Kang, S.; Keller, T. H.;
Jiricek, J.; Barry, C. E., 3rd Science 2008, 322, 1392.
We subjected the seven new derivatives 3a–3g to the analysis of
Lipinski’s rule which indicates if a chemical compound could be an
orally active drug in humans.54 We calculated theoretical c log P
using Osiris Property Explorer, molecular weight (MW) and number
of hydrogen bond donors and acceptors. Observing the results in
Table 2 it can be said that compounds 3a–3g satisfied the physico-
chemical parameters range established by the Lipinski’s rule.
Fragment based drug-likeness was predicted for the new deriv-
atives 3a–3g. This drug property indicates if the compound predom-
inantly contains fragments which are frequently present in
commercial drugs. As can be observed in Table 2, our theoretical
data showed that compounds 3a–3f presented positive values and
only compound 3g presented a negative drug-likeness. The majority
of marketed drugs show values between 0 and 4. This indicates that
1
4. Janin, Y. L. Bioorg. Med. Chem. 2007, 15, 2479.
15. Carta, A.; Loriga, M.; Paglietti, G.; Mattana, A.; Fiori, P. L. P. Eur. J. Med. Chem.
004, 39, 195.
2
16. Ancizu, S.; Moreno, E.; Solano, B.; Villar, R.; Burguete, A.; Torres, E.; Pérez-
Silanes, S.; Aldana, I.; Monge, A. Bioorg. Med. Chem. 2010, 18, 2713.
17. Vicente, E.; Villar, R.; Solano, B.; Burguete, A.; Ancizu, S.; Pérez-Silanes, S.;
Aldana, I.; Monge, A. An. R. Acad. Nac. Farm. 2007, 73, 927.
1
1
8. Jaso, A.; Zarranz, B.; Aldana, I.; Monge, A. Eur. J. Med. Chem. 2003, 38, 791.
9. Moreno, E.; Ancizu, S.; Pérez-Silanes, S.; Torres, E.; Aldana, I.; Monge, A. Eur. J.
Med. Chem. 2010, 45, 4418.
20. Vicente, E.; Pérez-Silanes, S.; Lima, L. M.; Ancizu, S.; Burguete, A.; Solano, B.;
Villar, R.; Aldana, I.; Monge, A. Bioorg. Med. Chem. 2009, 17, 385.
2
1. Vicente, E.; Villar, R.; Burguete, A.; Solano, B.; Pérez-Silanes, S.; Aldana, I.;
Maddry, J. A.; Lenaerts, A. J.; Franzblau, S. G.; Cho, S.; Monge, A.; Goldman, R. C.
Antimicrob. Agents Chemother. 2008, 52, 3321.
2
2. Villar, R.; Vicente, E.; Solano, B.; Pèrez-Silanes, S.; Aldana, I.; Maddry, J. A.;
Lenaerts, A. J.; Franzblau, S. G.; Cho, S.; Monge, A.; Goldman, R. C. J. Antimicrob.
Chemother. 2008, 62, 547.
drug-likeness values of our new compounds were comparable to
those of the majority of the commercial drugs.5
5–58
Moreover, we
23. Zarranz, B.; Jaso, A.; Aldana, I.; Monge, A. Bioorg. Med. Chem. 2003, 11, 2149.
24. Manetti, F.; Corelli, F.; Biava, M.; Fioravanti, R.; Porretta, G. C.; Botta, M.
Farmaco 2000, 55, 484.
used the Osiris program to predict the overall toxicity of the deriv-
atives 3a–3g and indicated a low toxicity risk profile.
25. Bacelar, A. H.; Carvalho, M. A.; Proenca, M. F. Eur. J. Med. Chem. 2010, 45, 3234.
In conclusion, a new class of quinoxaline 1,4-di-N-oxide deriva-
tives containing isonicotinic acid hydrazide pharmacophore has
been synthesized using a new optimized microwave-assisted
method. The microwave method allowed us to greatly reduce reac-
tion times, maintaining or even improving reaction yields. The new
compounds were evaluated against M. tuberculosis H37Rv strain;
six were active in the primary screening, showing an
26. Lourenço, M. C.; Ferreira, L.; Nora de Souza, M. V.; Peralta, M. A.; Vasconcelos, T.
R.; Henriques, M. G. Eur. J. Med. Chem. 2008, 43, 1344.
2
2
7. Abdel-Aziz, M.; Abdel-Rahman, H. M. Eur. J. Med. Chem. 2010, 45, 3384.
8. Maccari, R.; Ottana, R.; Vigorita, M. G. Bioorg. Med. Chem. Lett. 2005, 15, 2509.
29. Silva, F. P.; Ellena, J.; Ferreira, M.; Mascarenhas, Y. P.; de Souza, M. V. N.;
Wardell, J. L.; Wardell, S. M. S. V. J. molstruc. 2006, 788, 63.
3
3
0. Carvalho, S. A.; da Silva, E. F.; de Souza, M. V.; Lourenco, M. C.; Vicente, F. R.
Bioorg. Med. Chem. Lett. 2008, 18, 538.
1. Gilani, S. J.; Khan, S. A.; Siddiqui, N. Bioorg. Med. Chem. Lett. 2010, 20, 4762.
IC90 610
lg/mL, and then they moved on to the secondary screen-
32. Sriram, D.; Yogeeswari, P.; Madhu, K. Bioorg. Med. Chem. Lett. 2005, 15, 4502.
3
3. Navarrete-Vazquez, G.; Molina-Salinas, G. M.; Duarte-Fajardo, Z. V.; Vargas-
Villarreal, J.; Estrada-Soto, S.; González-Salazar, F.; Hernández-Nùñez, E.; Said-
Fernández, S. Bioorg. Med. Chem. 2007, 15, 5502.
ing level. Four of the compounds were active at this level, showing
a SI P10. The promising biological results obtained, along with the
good drug-likeness predictors that were calculated, make these
compounds valid leads for further studies in anti-TB therapies
and for synthesizing new compounds that possess better activity.
The suggested hypothesis of a dual mechanism of action needs to
be refined with the aid of additional in vivo evaluations, degrada-
tion kinetics measurements and stability studies of the synthesized
compounds. These new structures cold offer further inspiration for
future applications involving hybridization.
34. Tuberculosis, 2008, 88, 112.
35. Slayden, R. A.; Barry, C. E., 3rd Microbes Infect. 2000, 2, 659.
36. Scior, T.; Garcés-Eisele, S. J. Curr. Med. Chem. 2006, 13, 2205.
37. Ben Wiseman, X. C.; Feliz, M.; Donald, L. J.; Pons, M.; Fita, I.; Loewen, P. C. J. biol.
chem. 2010, 285, 26662.
38. Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E. J.; Fraga, C. A.
Curr. Med. Chem. 2007, 14, 1829.
3
9. Nava-Zuazo, C.; Estrada-Soto, S.; Guerrero-Álvarez, J.; León-Rivera, I.; Molina-
Salinas, G. M.; Said-Fernández, S.; Chan-Bacab, M. J.; Cedillo-Rivera, R.; Moo-
Puc, R.; Mirón-López, G.; Navarrete-Vazquez, G. Bioorg. Med. Chem. 2010, 18,
6398.
4
0. Tributino, J. L.; Duarte, C. D.; Correa, R. S.; Doriguetto, A. C.; Ellena, J.; Romeiro,
Acknowledgments
N. C.; Castro, N. G.; Miranda, A. L.; Barreiro, E. J.; Fraga, C. A. Bioorg. Med. Chem.
2009, 17, 1125.
4
4
4
4
1. Lacerda, R. B.; de Lima, C. K.; da Silva, L. L.; Romeiro, N. C.; Miranda, A. L.;
Barreiro, E. J.; Fraga, C. A. Bioorg. Med. Chem. 2009, 17, 74.
2. Ortega, M. A.; Montoya, M. E.; Jaso, A.; Zarranz, B.; Tirapu, I.; Aldana, I.; Monge,
A. Pharmazie 2001, 56, 205.
3. Ortega, M. A.; Sainz, Y.; Montoya, M. E.; Jaso, A.; Zarranz, B.; Aldana, I.; Monge,
A. Arzneim.-Forsch 2002, 52, 113.
We wish to express our gratitude to the PIUNA project from the
University of Navarra and the Tuberculosis Antimicrobial Acquisi-
tion and Coordinating Facility (TAACF) for carrying out the biolog-
ical assays through research and development contracts. Enrique
Torres is indebted to the University of Navarra (Spain) for PhD
scholarship.
4. Jaso, A.; Zarranz, B.; Aldana, I.; Monge, A. J. Med. Chem. 2005, 48, 2019.
45. Jie Jack, Li. Name Reactions, third ed.; Springer: Berlin, Heidelberg, 2006. p. 43–44.