10.1002/ejic.201801334
European Journal of Inorganic Chemistry
FULL PAPER
beam acceleration voltage of 3 kV and a conventional secondary electron
detector for the SEM investigations.
[19] Y. Y. Zhang, M. K. Ram, E. K. Stefanakos, D. Y. Goswami, J. Nanomater.
2012, 2012, 22.
[20] R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Nano-Micro Lett. 2015, 7,
97-120.
Powder samples were prepared for TEM (Transmission Electron
Microscopy) observations. A small amount of each sample was suspended
in ethanol using an ultrasonic bath to get rid of agglomeration. A drop of
this suspension was deposited onto a holey carbon coated copper grid.
[21] S. Leonardi, Chemosensors 2017, 5, 17.
[22] G. Heiland, Z. Phys. 1957, 148, 28-33.
[23] G. Heiland, Sensor. Actuator. 1981, 2, 343-361.
[24] A. R. Raju, C. N. R. Rao, Sensor. Actuat. B-Chem. 1991, 3, 305-310.
[25] J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Yan, L.
Vayssieres, Nanotechnology 2006, 17, 4995.
Images of the microstructure and the relevant selected area electron
diffraction (SAED) patterns were acquired using an analytical electron
microscope (Philips CM12), operated at 120 keV. For the phase
identification and indexing of the SAED patterns the Process Diffraction
(freeware) software was employed.[91-94]
[26] M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, J. G. Park,
Sensor. Actuat. B - Chem. 2009, 138, 168-173.
[27] S. K. Pandey, K.-H. Kim, K.-T. Tang, TRAC - Trend. Anal. Chem. 2012,
32, 87-99.
[28] A. Wellinger, A. Lindberg, Biogas upgrading and utilization. Task 24:
energy from biological conversion of organic waste, IEA Bioenergy, 1999.
[29] D. Schieder, P. Quicker, R. Schneider, H. Winter, S. Prechtl, M. Faulstich,
Water Sci. Technol. 2003, 48, 209-212.
The SEM images of the gas sensors were taken on a Zeiss Merlin system
at an accelerating voltage of 2 kV and a working distance of 2.5 mm.
[30] S. Pipatmanomai, S. Kaewluan, T. Vitidsant, Appl. Energ. 2009, 86, 669-
674.
Acknowledgements
[31] H. Huang, P. Xu, D. Zheng, C. Chen, X. Li, J. Mater. Chem. A 2015, 3,
6330-6339.
Financial support was provided by the DFG via the GrK (Research
training group) 2204 "Substitute Materials for sustainable Energy
Technologies". S.G. gratefully acknowledges DFG and the
Justus-Liebig Universität Gießen for the provision of a Mercator
Fellowship (2016-2020). We would like to thank the Centre of
Materials Research (LaMa) at Justus-Liebig Universität Gießen
for the support of this project. Furthermore, we would like to thank
the DFG for the financial support of our research (KO 719/13-1).
[32] I. Marr, K. Neumann, M. Thelakkat, R. Moos, Appl. Phys. Lett. 2014, 105,
133301.
[33] I. Marr, A. Groß, R. Moos, J. Sens. Sens. Syst. 2014, 3, 29-46.
[34] C. Klingshirn, Phys. Status Solidi B 2007, 244, 3027-3073.
[35] P. Dolcet, F. Latini, M. Casarin, A. Speghini, E. Tondello, C. Foss, S.
Diodati, L. Verin, A. Motta, S. Gross, Eur. J. Inorg. Chem. 2013, 2013,
2291-2300.
[36] L. Spanhel, J. Sol-Gel Sci. Technol. 2006, 39, 7-24.
[37] L. Spanhel, M. A. Anderson, J. Am. Chem. Soc. 1991, 113, 2826-2833.
[38] Z. Chen, G. Zhan, Y. Wu, X. He, Z. Lu, J. Alloy Compd. 2014, 587, 692-
697.
Keywords: hydrothermal synthesis; zinc oxide; gas sensors;
[39] E. J. Donahue, A. Roxburgh, M. Yurchenko, Mater. Res. Bull. 1998, 33,
323-329.
dosimeters; functional materials
[40] A. Famengo, S. Anantharaman, G. Ischia, V. Causin, M. M. Natile, C.
Maccato, E. Tondello, H. Bertagnolli, S. Gross, Eur. J. Inorg. Chem. 2009,
2009, 5017-5028.
[1]
[2]
H. Mirzaei, M. Darroudi, Ceram. Int. 2017, 43, 907-914.
H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device
Technology, Vol. Weinheim, Wiley VCH, 2009.
[41] D. R. Modeshia, R. I. Walton, Chem. Soc. Rev. 2010, 39, 4303-4325.
[42] S. Diodati, P. Dolcet, M. Casarin, S. Gross, Chem. Rev. 2015, 115,
11449-11502.
[3]
[4]
T. Kim, T. Hyeon, Nanotechnology 2014, 25, 012001.
S. Chandra, K. C. Barick, D. Bahadur, Adv. Drug Deliv. Rev. 2011, 63,
1267-1281.
[43] O. Lupan, L. Chow, L. K. Ono, B. R. Cuenya, G. Chai, H. Khallaf, S. Park,
A. Schulte, J. Phys. Chem. C 2010, 114, 12401-12408.
[44] W. E. Mahmoud, J. Cryst. Growth 2010, 312, 3075-3079.
[45] A. Yu, J. Qian, H. Pan, Y. Cui, M. Xu, L. Tu, Q. Chai, X. Zhou, Sensor.
Actuat. B-Chem. 2011, 158, 9-16.
[5]
Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V.
Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 2005, 98, 041301.
Z. L. Wang, J. Phys.: Condens. Matter 2004, 16, R829-R858.
A. B. Djurisic, Y. H. Leung, Small 2006, 2, 944-961.
J. Gomez, O. Tigli, J. Mater. Sci. 2013, 48, 612-624.
J. Xu, Z. Chen, J. A. Zapien, C.-S. Lee, W. Zhang, Adv. Mater. 2014, 26,
5337-5367.
[6]
[7]
[8]
[9]
[46] Y. Lu, Y. Lin, D. Wang, L. Wang, T. Xie, T. Jiang, Nano Res. 2011, 4,
1144-1152.
[47] P. K. Sharma, M. Kumar, A. C. Pandey, J. Nanopart. Res. 2011, 13,
1629-1637.
[10] S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton,
N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, L. A.
Boatner, Journal of Applied Physics 2003, 93, 1-13.
[48] C. Wu, L. Shen, H. Yu, Q. Huang, Y. C. Zhang, Mater. Res. Bull. 2011,
46, 1107-1112.
[11] P. H. Miller, Phys. Rev. 1941, 60, 890-895.
[49] E. D. Bøjesen, K. M. Ø. Jensen, C. Tyrsted, N. Lock, M. Christensen, B.
B. Iversen, Cryst. Growth Des. 2014, 14, 2803-2810.
[50] X. Zhao, M. Li, X. Lou, Adv. Powder Technol. 2014, 25, 372-378.
[51] M. Salavati-Niasari, F. Davar, M. Mazaheri, J. Alloy. Compd. 2009, 470,
502-506.
[12] J. Anderson, G. V. d. W. Chris, Rep. Prog. Phys. 2009, 72, 126501.
[13] Y. Hou, Z. Mei, X. Du, J. Phys. D Appl. Phys. 2014, 47, 283001.
[14] R. Suryanarayanan, in ZnO Nanocrystals and Allied Materials, Vol. 180
(Eds.: M. S. R. Rao, T. Okada), Springer India, 2014, pp. 289-307.
[15] Y. Xiao, Z. Pan, X. Tian, H. Zhang, X. Zeng, C. Xiao, G. Hu, Z. Wei, Mater.
Lett. 2014, 131, 94-96.
[52] J.-Y. Park, S.-J. Park, J.-H. Lee, C.-H. Hwang, K.-J. Hwang, S. Jin, D.-Y.
Choi, S.-D. Yoon, I.-H. Lee, Mater. Lett. 2014, 121, 97-100.
[53] S. Li, Z. Wu, W. Li, Y. Liu, R. Zhuo, D. Yan, W. Jun, P. Yan,
CrystEngComm 2013, 15, 1571-1577.
[16] D. Panda, T.-Y. Tseng, J. Mater. Sci. 2013, 48, 6849-6877.
[17] M. Inoue, N. Hasegawa, R. Uehara, N. Gokon, H. Kaneko, Y. Tamaura,
Sol. Energy 2004, 76, 309-315.
[54] L. M. Gan, B. Liu, C. H. Chew, S. J. Xu, S. J. Chua, G. L. Loy, G. Q. Xu,
Langmuir 1997, 13, 6427-6431.
[18] S. K. Kansal, A. H. Ali, S. Kapoor, D. W. Bahnemann, Sep. Purif. Technol.
2011, 80, 125-130.
[55] J. Zhang, S. Liu, J. Yu, M. Jaroniec, J. Mater. Chem. 2011, 21, 14655-
14662.
This article is protected by copyright. All rights reserved.