Catalysis Science & Technology
Paper
hydrogen from the APR of glycerol on Ni is delivered to the
primary or terminal carbon of the glycerol which is adsorbed
onto Cu. After the protonation to terminal OH by the acidic
sites, the Cu metal cleaves the C–O bond, then the hydrogen
is transferred from Ni metal to the terminal carbon at an
adjacent Cu metal, simultaneously.42 When the APR is used
for the production of hydrogen in glycerol hydrogenolysis,
both ratio control of Cu to Ni and the reaction conditions are
significant factors in the production of 1,2-PDO with high
yield. In addition, CTH requires an additional donor
compound and semi-continuous reactor for high yield of
1,2-PDO.48 Therefore, the APR is a more effective source of
hydrogen for the conversion of glycerol to various polyols.
4 N. D. Kim, J. R. Park, D. S. Park, B. K. Kwak and J. Yi, Green
Chem., 2012, 14, 2638.
5 Y. Nakagawa and K. Tomishige, Catal. Sci. Technol., 2011,
1, 179.
6 L. Huang, Y.-L. Zhu, H.-Y. Zheng, Y.-W. Li and Z.-Y. Zeng,
J. Chem. Technol. Biotechnol., 2008, 83, 1670.
7 M. Balaraju, V. Rekha, P. S. Sai Prasad, R. B. N. Prasad and
N. Lingaiah, Catal. Lett., 2008, 126, 119.
8 S. Sato, M. Akiyama, K. Inui and M. Yokota, Chem. Lett.,
2009, 38, 560.
9 Z. Xiao, J. Xiu, X. Wang, B. Zhang, C. T. Williams, D. Su and
C. Liang, Catal. Sci. Technol., 2013, 3, 1108.
10 N. D. Kim, S. Oh, J. B. Joo, K. S. Jung and J. Yi, Korean J.
Chem. Eng., 2010, 27, 431.
11 M. Balaraju, K. Jagadeeswaraiah, P. S. S. Prasad and
N. Lingaiah, Catal. Sci. Technol., 2012, 2, 1967.
12 J. Zhou, L. Guo, X. Guo, J. Mao and S. Zhang, Green Chem.,
2010, 12, 1835.
13 E. D'Hondt, S. Van de Vyver, B. F. Sels and P. A. Jacobs,
Chem. Commun., 2008, 6011.
14 D. Roy, B. Subramaniam and R. V. Chaudhari, Catal. Today,
2010, 156, 31.
15 I. Gandarias, J. Requies, P. L. Arias, U. Armbruster and
A. Martin, J. Catal., 2012, 290, 79.
16 Y. Kim, B. Lee and J. Yi, Korean J. Chem. Eng., 2002, 19, 908.
17 P. Kim, Y. Kim, H. Kim, I. K. Song and J. Yi, J. Mol. Catal. A:
Chem., 2005, 231, 247.
18 G. V. Sagar, P. V. R. Rao, C. S. Srikanth and K. V. R. Chary,
J. Phys. Chem. B, 2006, 110, 13881.
4 Conclusions
Cu–Ni bimetallic catalysts supported on mesoporous alumina
(MA) with different metal compositions were successfully syn-
thesized using a post-hydrolysis sol–gel method. The Cu–Ni/MA
catalysts exhibited mesoporosities and had a relatively high
metal dispersion (ca. 33 wt.%), resulting in the formation of
nano-sized metal particles. Among the prepared samples, the
9Cu–1Ni/MA catalyst showed the highest catalytic performance,
because of the increased hydrogen utilization and the high
surface ratio of Cu0/(Cu0 + Cu2+). On the Cu–Ni bimetallic cata-
lysts, the surface ratio of Ni/(Cu + Ni) and the Cu0/(Cu0 + Cu2+)
were related to the selectivity and yield in the hydrogenolysis of
glycerol to 1,2-PDO. Through the addition of Ni on Cu-based
catalysts, the reducibility of Cu was increased and hydrogen
sources were generated in situ by the aqueous phase reforming
of glycerol. The generated hydrogen was subsequently used for
the hydrogenation of acetol in the hydrogenolysis of glycerol to
1,2-PDO. By the activity test in the absence of H2, the ratio of
Ni to Cu was an important factor to the high yield of 1,2-PDO.
The optimum value of the ratio of Ni to Cu is different with
respect to the pressurized atmosphere; the presence of hydro-
gen gas or the absence of hydrogen gas. Their different reac-
tion pathways are proposed over Cu–Ni bimetallic catalysts for
the hydrogenolysis of glycerol with aqueous phase reforming.
19 P. Kim, Y. Kim, H. Kim, I. K. Song and J. Yi, Appl. Catal., A,
2004, 272, 157.
20 R. B. Mane, S. E. Kondawar, P. S. Niphadkar, P. N. Joshi,
K. R. Patil and C. V. Rode, Catal. Today, 2012, 198, 321.
21 R. B. Mane and C. V. Rode, Green Chem., 2012, 14, 2780.
22 I. Jiménez-Morales, F. Vila, R. Mariscal and A. Jiménez-López,
Appl. Catal., B, 2012, 117–118, 254.
23 G. Wen, Y. Xu, H. Ma, Z. Xu and Z. Tian, Int. J. Hydrogen
Energy, 2008, 33, 6657.
24 X. Wang, X. Pan, R. Lin, S. Kou, W. Zou and J.-X. Ma, Int. J.
Hydrogen Energy, 2010, 35, 4060.
25 F. E. López-Suárez, A. Bueno-López and M. J. Illán-Gómez,
Appl. Catal., B, 2008, 84, 651.
26 A. Alhanash, E. F. Kozhevnikova and I. V. Kozhevnikov, Appl.
Catal., A, 2010, 378, 11.
27 B. K. Kwak, D. S. Park, Y. S. Yun and J. Yi, Catal. Commun.,
2012, 24, 90.
28 A. Torres, D. Roy, B. Subramaniam and R. V. Chaudhari, Ind.
Eng. Chem. Res., 2010, 49, 10826.
Acknowledgements
This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MEST) (no. 2013R1A2A2A01067164).
29 I. Gandarias, S. G. Fernández, M. E. Doukkali, J. Requies
and P. L. Arias, Top. Catal., 2013, 56, 995.
Notes and references
1 M. G. Musolino, L. A. Scarpino, F. Mauriello and
R. Pietropaolo, ChemSusChem, 2011, 4, 1143.
30 I. Gandarias, P. L. Arias, J. Requies, M. B. Güemez and
J. L. G. Fierro, Appl. Catal., B, 2010, 97, 248.
2 B. Katryniok, S. Paul, M. Capron and F. Dumeignil,
ChemSusChem, 2009, 2, 719.
3 M. D. Soriano, P. Concepción, J. M. L. Nieto, F. Cavani,
S. Guidetti and C. Trevisanut, Green Chem., 2011, 13, 2954.
31 R. L. Manfro, T. P. M. D. Pires, N. F. Ribeiro and
M. M. V. M. Souza, Catal. Sci. Technol., 2013, 3, 1278.
32 V. Ponec, Appl. Catal., A, 2001, 222, 31.
33 B. Coq and F. Figueras, Coord. Chem. Rev., 1998, 178–180, 1753.
This journal is © The Royal Society of Chemistry 2014
Catal. Sci. Technol., 2014, 4, 3191–3202 | 3201