Please do not adjust margins
RSC Advances
DOI: 10.1039/C5RA14077C
COMMUNICATION
Journal Name
Fund for Basic Research (grant #15-03-02661) and NSF REU
program grant #CHE-1263259 for student support (TB). Support for
the NMR instrumentation was provided by NIH Shared Instrument-
ation Grant #S10RR024664 and NSF Major Research Instrument-
ation Grant #0320648.
Notes and references
1
For review, see: (a) J. Montgomery, Sci. Synth., 2002, 1, 11.
See also: (b) R. Shintani, T. Tsuji, S. Park and T. Hayashi,
Chem. Commun., 2010, 46, 1697; (c) P. H. Lee, K. Lee and Y.
Kang, J. Am. Chem. Soc., 2006, 128, 1139; (d) P. H. Lee and K.
Lee, Angew. Chem., Int. Ed., 2005, 44, 3253; (e) M. A.
ElAmrani, I. Suisse, N. Knouzi and A. Mortreux, Tetrahedron
Lett., 1995, 36, 5011; (f) A. Bendayan, H. Masotti; G. Peiffer,
C. Siv and A. Archavlis, J. Organomet. Chem., 1993, 444, 41;
(
g) K. Masuda, K. Nakano, T. Fukahori, H. Nagashima and K.
Itoh, J. Organomet. Chem., 1992, 428, C21; (h) K. U.
Baldenius, H. Tom Dieck, W. A. Koenig, D. Icheln and T.
Runge, Angew. Chem., Int. Ed., 1992, 31, 305.
2
(a) M. V. S. N. Maddipatla, M. Pattabiraman, A. Natarajan, K.
Srivastav, J. T. Mague and V. Ramamurthy, Org. Biomol.
Chem., 2012, 10, 9219; (b) A. Michaelides, S. Skoulika and
M. G. Siskos, Chem. Commun., 2011, 47, 7140.
Scheme 5
initial stages of the reaction. By carrying out the reaction at slightly
lower temperature, we were able to isolate 14a (Ar = Ph) in low
yield (9%) and confirm its structure by spectral methods. Being re-
subjected to the typical reaction conditions, 14a did not provide any
cyclic products, but slowly polymerized instead. Polymerization of
the alternate dimeric intermediate 14 under the reaction conditions
significantly simplified isolation and purification of the tricyclic
products 4, as upon completion of the reaction the crude mixture
contained only one chromatographically mobile component
accompanied by small amounts of immobile polymers.
3
4
5
6
V. A. Petrov and W. Marshall, Beilst. J. Org. Chem., 2010,
6(46), doi:10.3762/bjoc.6.46.
N. J. Turro and J. R. Williams, Tetrahedron Lett., 1969, 10
321.
T. Machiguchi, J. Okamoto, Y. Morita, T. Hagesawa, S.
Yamabe and T. Minato, J. Am. Chem. Soc., 2006, 128, 44.
(a) J. S. Yadav, K. V. R. Rao, K. Ravindar and B. V. S. Reddy,
Eur. J. Org. Chem., 2011, 58; (b) J. S. Yadav, T. S. Rao, N. N.
Yadav, K. V. R. Rao, B. V. S. Reddy and A. Al Khazim Al
Ghamdi, Synthesis, 2012, 44, 788.
H. J. Rogers, J. Chem. Soc., Perkin Trans. 1, 1995, 3073.
(a) P. Ryabchuk, A. Edwards, N. Gerasimchuk, M. Rubina and
M. Rubin, Org. Lett., 2013, 15, 6010; (b) J. E. Banning, A. R.
Prosser, B. K. Alnasleh, J. Smarker, M. Rubina and M. Rubin,
J. Org. Chem., 2011, 76, 3968; (c) J. E. Banning, A. R. Prosser
and M. Rubin, Org. Lett., 2010, 12, 1488.
,
7
8
Conclusions
In conclusion, we have demonstrated an efficient 4+4-cyclodi-
merization of (cycloprop-2-en-1-yl)methanols allowing for a single
step assembly of medium sized cyclic ethers via the simultaneous
formation of two ethereal C-O bonds. The described base-assisted,
strain release-driven transformation proceeds via a sterically-
controlled, facially-selective, intermolecular nucleophilic addition of
alkoxides across the double bond of cyclopropenes followed by a
diastereoselective ring closure, furnishing an unusual 2,7-
9
(a) J. E. Banning, J. Gentillon, P. G. Ryabchuk, A. R. Prosser, A.
Rogers, A. Edwards, A. Holtzen, I. A. Babkov, M. Rubina and
M. Rubin, J. Org. Chem., 2013, 78, 7601; (b) P. Ryabchuk, M.
Rubina, J. Xu and M. Rubin, Org. Lett., 2012, 14, 1752; (c) A.
R. Prosser, J. E. Banning, M. Rubina and M. Rubin, Org. Lett.,
2
010, 12, 3968.
1
1
0 B. K. Alnasleh, W. M. Sherrill, M. Rubina, J. Banning and M.
Rubin, J. Am. Chem. Soc., 2009, 131, 6906.
1 See Supporting Information for details.
4
,6
dioxatricyclo[7.1.0.0 ]decane core. To the best of our knowledge, 12 M. Rubina, M. Rubin and V. Gevorgyan, J. Am. Chem. Soc.,
this is the first example of a 4+4-cyclodimerization involving
nucleophilic addition of oxygen-based nucleophiles to olefin
moieties. Sterically controlled facial selectivity of the intermol-
ecular attack in the first step of the reaction translates into the high
chemoselectivity of the subsequent intramolecular cyclization.
Such “natural selection”, in which only the major intermediate, cis-
linear dimer can participate in cyclization, while the minor trans-
2004, 126, 3688.
3 A. Edwards and M. Rubin, Tetrahedron, 2015, 71, 3237.
4 X. Liu and J. M. Fox, J. Am. Chem. Soc., 2006, 128, 5600.
1
1
2
linear dimer polymerizes, results in the C -symmetric tricyclic
compounds obtained exclusively in good yields and with excellent
diastereoselectivities.
Financial support from International Collaboration Program,
supported by the Ministry of Education and Science of the Russian
Federation and the Ministry of Education of Perm Krai is gratefully
acknowledged. We also are grateful for support by the Russian
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins