Journal of Natural Products
Article
49, 2063−2076. (c) Shearman, J. W.; Myers, R. M.; Brenton, J. D.;
Ley, S. V. Org. Biomol. Chem. 2011, 9, 62−65.
Matthew T. Jamison − Department of Chemistry and
Biochemistry, University of California, San Diego, La Jolla,
California 92093-0358, United States
(15) Two lines of evidence to support the presence of
thermodynamically more stable E-geometry include the C-17
chemical shift (CCCCCCCC13C 27.4; cf. E,E-psammaplyin A, δ
27.1). (a) Arabshahi, L.; Schmitz, F. J. J. Org. Chem. 1987, 52, 3584−
3586 and the consistent presence of a hydrogen bond between the
oxime N and the amide NH observed in X-ray structures.
(b) Kazlauskas, R.; Lidgard, R. O.; Murphy, P. T.; Wells, R. J.;
Blount, J. F. Aust. J. Chem. 1981, 34, 765−786. Natural products with
the rare less-stable Z-geometry (viz. bastadin isomers) have been
documented. (c) Calcul, L.; Inman, W. D.; Morris, A. A.; Tenney, K.;
Ratnam, J.; McKerrow, J. H.; Valeriote, F. A.; Crews, P. J. Nat. Prod.
2010, 73, 365−372.
Complete contact information is available at:
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank M. Cabrera-Abad, K. Planck, and R. Hendra for
assistance in HPLC purification of 1−4a and (−)-7, E. P. Stout
for assistance with collection of marine sponge samples, A.
Mrse and B. Duggan for NMR support, X. Su for HRMS
measurements, and J. Pawlik (UNC Wilmington) and the crew
of the R.V. Walton Smith for the logistics of sample collection
in the Bahamas. M.C.-A. and K.P. were supported by the
STARS summer research program, UC San Diego. Acquis-
itions of the Agilent TOF mass spectrometer and the 500 MHz
NMR spectrometer were made possible with funds from the
NIH Shared Instrument Grant program (S10RR025636) and
the NSF Chemical Research Instrument Fund (CHE0741968),
respectively. We are grateful for support for this research from
the NIH (AI100776, AT009783).
(16) Marfey, P. Carlsberg Res. Commun. 1984, 49, 591−196.
(17) Salib, M. N.; Molinski, T. F. J. Org. Chem. 2017, 82, 10181−
10187.
(18) The Marfey’s derivatives L- and D-isoSer-L-DAA,16 prepared
from standard isoSer samples and L-FDAA, failed to separate under
the same reversed-phase HPLC conditions.
1
(19) Duplication of the H-5 vinyl H NMR signal (Δδ = 0.003;
Table 1) is also observed.
(20) Castillo, A. M.; Patiny, L.; Wist, J. J. Magn. Reson. 2011, 209,
123−130.
(21) This is not contradictory to our independent findings that the
epimer ratio of isoSer in 2 is 1:1 but 67:33 in the SIO heterocycle (see
Note 27 below and discussion in the text). For simplicity of argument,
if the latter ratio is approximated to 2:1 and the components
permuted, the four outcomes are two enantiomeric pairs of
diastereomers: (1S,6R,11S), (1S,6R,11R) and (1R,6S,11R),
(1R,6S,11S) in the proportions 3:3:2:2. The NMR-distinguishable
diastereomers, therefore, are present in the ratio of 5:5 or 1:1.
(22) McMillan, J. A.; Paul, I. C.; Goo, Y. M.; Rinehart, K. L.;
Krueger, W. C.; Pschigoda, L. M. Tetrahedron Lett. 1981, 22, 39−42.
(23) Fattorusso, E.; Minale, L.; Sodano, G. Chem. Commun. 1970,
752−753.
REFERENCES
■
(1) Peng, J.; Li, J.; Hamann, M. T. Alkaloids Chem. Biol. 2005, 61,
59−262.
(2) Lira, N. S.; Montes, R. C.; Tavares, J. F.; da Silva, M. S.; da
Cunha, E. V.; de Athayde-Filho, P. F.; Rodrigues, L. C.; da Silva Dias,
C.; Barbosa-Filho, J. M. Mar. Drugs 2011, 9, 2316−2368.
(3) Ueberlein, S.; Machill, S.; Schupp, P. J.; Brunner, E. Mar. Drugs
2017, 15, 34−49.
(4) Ueberlein, S.; Machill, S.; Niemann, H.; Proksch, P.; Brunner, E.
Mar. Drugs 2014, 12, 4417−4438.
(5) (a) Kobayashi, J.; Tsuda, M.; Agemi, K.; Shigemori, H.;
Ishibashi, M.; Sasaki, T.; Mikami, Y. Tetrahedron 1991, 47, 6617−
6622. (b) Andersen, R. J.; Faulkner, D. J. Tetrahedron Lett. 1973, 14,
1175−1178. (c) Gao, H.; Kelly, M.; Hamann, M. T. Tetrahedron
1999, 55, 9717−9726.
(6) De Medeiros, A.; Gandolfi, R. C.; Secatto, A.; Falcucci, R. M.;
Faccioli, L. H.; Hajdu, E.; Peixinho, S.; Berlinck, R. G. S.
Immunopharmacol. Immunotoxicol. 2012, 34, 919−924.
(7) (a) Shaala, L. A.; Youssef, D. T. A.; Badr, J. M.; Sulaiman, M.;
(24) Fulmor, W.; Van Lear, G. E.; Morton, G. O.; Mills, R. D.
Tetrahedron Lett. 1970, 11, 4551−4552.
(25) Moscowitz, A.; Charney, E.; Weiss, U.; Ziffer, H. J. Am. Chem.
Soc. 1961, 83, 4661−4663.
(26) Burgstahler, A. W.; Ziffer, H.; Weiss, U. J. Am. Chem. Soc. 1961,
83, 4660−4661.
(27) MMFF. Molecular modeling of aeroplysillin-1 shows the diene
has similar helicity (this work, MMFF, dihedral θ = 17.6°), in good
correspondence with the X-ray crystal structure assignments of both
(+)- and (−)-aeroplysillin-1 (θ = 17.3 1). Cosulich, D. B.; Lovell, F.
M. J. Chem. Soc. D 1971, 397−398.
̈
Khedr, A. Mar. Drugs 2015, 13, 1621−1631. (b) Gothel, Q.; Sirirak,
(28) If one assumes, for example, highly dichroic (+)-aerothionin
(S2, Table 2) is optically pure (“100% ee”, also see ref 38), the ratio
of CE magnitudes of S2 and 2 implies the latter is only 19.3% ee (er =
63:37). Lack of precision of ECD measurements on a sub-milligram
sample of 2 limits the accuracy of this conclusion.
(29) We have found the effects of more distal stereocenters in SIOs
upon the net ECD spectrum, e.g., fistularin-3 and 11-hydroxyfistular-
in-3, to be negligible.
(30) Another possibility we considered is that 4c is formed as a
racemic or near-racemic modification and kinetically resolved in
downstream enzymatic coupling reactions. This possibility would
explain enantiomorphic 4c and fistularin-3 in the same sample.48
(31) Okamoto, Y.; Ojika, M.; Kato, S.; Sakagami, Y. Tetrahedron
2000, 56, 5813−5818.
(32) Kobayashi, J. i.; Tsuda, M.; Agemi, K.; Shigemori, H.; Ishibashi,
M.; Sasaki, T.; Mikami, Y. Tetrahedron 1991, 47, 6617−6622.
(33) Benharref, A.; Païs, M.; Debitus, C. J. Nat. Prod. 1996, 59, 177−
180.
̈
T.; Kock, M. Beilstein J. Org. Chem. 2015, 11, 2334−2342.
́
́
(8) Nicacio, K. J.; Ioca, L. P.; Froes, A. M.; Leomil, L.; Appolinario,
L. R.; Thompson, C. C.; Thompson, F. L.; Ferreira, A. G.; Williams,
D. E.; Andersen, R. J.; Eustaquio, A. S.; Berlinck, R. G. S. J. Nat. Prod.
2017, 80, 235−240.
(9) Fattorusso, E.; Minale, L.; Sodano, G. J. Chem. Soc. D 1970,
751−752.
(10) Gunasekera, M.; Gunasekera, S. P. J. Nat. Prod. 1989, 52, 753−
756.
(11) Cimino, G.; De Rosa, S.; De Stefano, S.; Self, R.; Sodano, G.
Tetrahedron Lett. 1983, 24, 3029−3032.
(12) Kobayashi, J.; Honma, K.; Sasaki, T.; Tsuda, M. Chem. Pharm.
Bull. 1995, 43, 403−407.
(13) (a) Nakamura, H.; Wu, H.; Kobayashi, J. i.; Nakamura, Y.;
Ohizumi, Y.; Hirata, Y. Tetrahedron Lett. 1985, 26, 4517−4520.
(b) Nakamura, Y.; Kobayashi, M.; Nakamura, H.; Wu, H.; Kobayashi,
J.; Ohizumi, Y. Eur. J. Biochem. 1987, 167, 1−6.
(14) (a) Ciminiello, P.; Fattorusso, E.; Magno, S.; Pansini, M. J. Nat.
Prod. 1994, 57, 1564−1569. (b) Zhu, G.; Yang, F.; Balachandran, R.;
(34) Salim, A. A.; Khalil, Z. G.; Capon, R. J. Tetrahedron 2012, 68,
9802−9807.
̈
̈
Hook, P.; Vallee, R. B.; Curran, D. P.; Day, B. W. J. Med. Chem. 2006,
H
J. Nat. Prod. XXXX, XXX, XXX−XXX