Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
H. Bricout et al.rJournal of Organometallic Chemistry 553 1998 469–471
(
)
471
conditions; indicating that the initial production of the
isomers is kinetically controlled. Finally, it is worth
mentioning that no addition product with water, hydro-
chloric or hydroiodic acid has been observed in the
experiments.
especially in cyclodimerisation and oligomerization re-
actions, can be expected with these complexes in bipha-
sic catalysis.
The nickelrdiphosphinerHCl catalytic system is also
efficient for the isomerization of other olefins. For
instance, hex-1-ene isomerization into hex-2-ene and
hex-3-ene can be achieved with an initial turnover
frequency of 500 hy1. At hex-1-ene complete conver-
sion, the hex-3-ene to hex-2-ene ratio reached 2.5.
Although no conclusive evidence has been obtained,
we believe that the above results can be rationalized if
one considers the formation of hydride nickel com-
plexes in the acidic aqueous medium.
References
w x
1
B. Cornils, W.A. Herrmann, R.W. Eckl, J. Mol. Catal. 116
Ž
.
1997 27.
w x
2
W.A. Herrmann, C. Kohlpaintner, Angew. Chem. Int. Ed. Engl.
Ž
.
32 1993 1524.
w x
3
Ž
.
B. Cornils, E. Wiebus, Recl. Trav. Chim. Pays-Bas 115 1996
211.
w x
Ž .
B. Cornils, E. Wiebus, Chem. Tech. 25 1995 33.
J. Bakos, R. Karaivanov, M. Laghmari, D. Sinou,
Organometallics 13 1994 2951.
4
w x
5
Ž
.
w x
6
A. Andriollo, A. Bolivar, F.A. Lopez, D.E. Paez, Inorg. Chim.
Acta 238 1995 187.
By analogy with the behaviour of hydrophobic com-
Ž
.
Ž
.
Ž
.
plexes Ni PPh3 or Ni DPPB in acidic homogeneous
w x
Ž
.
7
w x
8
C. Kohlpaintner, M. Beller, J. Mol. Catal. 116 1997 259.
G. Papadogianakis, L. Maat, R.A. Sheldon, J. Mol. Catal. 116
4
2
w
x
medium 24–26 , nickel hydride complexes could be
formed by protonation of the water-soluble zerovalent
nickel complex Ni TPPTS or Ni DPPBTS . The re-
Ž
.
1997 179.
w x
9
E. Monflier, S. Tilloy, F. Bertoux, Y. Castanet, A. Mortreux,
Ž
.
Ž
.
3
x
Ž
.
New J. Chem. 21 1997 529.
sulting cationic hydride could be in equilibrium with ion
w
w
x
Ž
.
10 Z. Jiang, A. Sen, Macromolecules 27 1994 7215.
Ž .
Ž .
pair species A and covalent species B as depicted in
x
11 T. Prinz, W. Keim, B. Driessen-Holscher, Angew. Chem. Int.
¨
Ž .
Ž
.
Eq. 1 . The isomerization of allylbenzene to b-methyl-
Ed. Engl. 35 1996 1708.
w
w
x
12 E. Monflier, P. Bourdauducq, J.L. Couturier, A. Mortreux, J.
styrene could then be explained from these species via
an addition–elimination mechanism, as reported for iso-
Ž
.
Kervennal, Appl. Catal. 131 1995 167.
x
13 C. Amatore, E. Blart, J.P. Genet, A. Jutand, S. Lemaire-Audoire,
ˆ
w
x
merization conducted in homogeneous medium 27–29 .
Moreover, the variation of the catalytic activity and of
the stereoselectivity observed with the different anions
could be due to a more or less important concentration
of these species in the reaction medium.
Ž
.
M. Savignac, J. Org. Chem. 60 1995 6829.
w
w
w
x
Ž
.
Ž
14 T. Karlen, A. Ludi, J. Am. Chem. Soc. 116 1994 11375.
x
.
15 D.V. McGrath, R.H. Grubbs, Organometallics 13 1994 224.
x
16 H. Shertchook, D. Avnir, J. Blum, F. Joo, A. Katho, H. Schu-
Ž
.
mann, R. Weimann, S. Wernik, J. Mol. Catal. A 108 1996
153.
The poor results obtained with TPPTS could be
attributed to the weak stability of the hydride nickel
complex of this monodentate phosphine. The degrada-
tion of this species would proceed likely through the
w
x
17 D.J. Darensbourg, N.W. Stafford, F. Joo, J.H. Reibenspies, J.
Ž
.
Organomet. Chem. 488 1995 99.
w
w
x
Ž
.
Ž
.
18 E.G. Kuntz Rhone-Poulenc Ind. , Fr. Pat. 2338253 1976 .
ˆ
x
19 W.A. Herrmann, J. Kellner, H. Riepl, J. Organomet. Chem. 389
Ž
.
1990 103.
w
x
protonolysis of the hydride–nickel bond 29 . With the
chelating tetrasulfonated diphosphine DPPBTS, this side
reaction appears considerably reduced and the catalytic
activity can be preserved at least for the first 48 h.
Further experiments to gain better insight into the stabil-
ity of the diphosphinernickel system are currently un-
der way in our laboratory and will not be discussed
further here.
w
w
w
w
w
x
20 I.R. Baird, M.B. Smith, B.R. James, Inorg. Chim. Acta. 235
Ž
.
1995 291.
x
21 T. Bartik, B.B. Bunn, B. Bartik, B.E. Hanson, Inorg. Chim.
Ž
.
Acta. 33 1994 164.
x
22 T. Bartik, B. Bartik, B.E. Hanson, I. Guo, I. Toth,
Ž
.
Organometallics 12 1993 164.
x
Ž
.
23 L. Lecomte, D. Sinou, Phosphorus, Sulfur and Silicon 53 1990
239.
x
24 W.C. Drinkard, D.R. Eaton, J.P. Jesson, R.V. Lindsey, Inorg.
Ž
.
Provided that the ligand is properly tailored, this
preliminary study proves the ability of nickel water-
soluble organometallic complexes to catalyze reactions
in aqueousrorganic two-phase system. Consequently,
further fruitful developments connected with the well-
known nickel catalyzed olefin and diene chemistry,
Chem. 9 1970 302.
w
w
w
x
Ž
.
25 R.A. Schunn, Inorg. Chem. 9 1970 395.
x
Ž
.
26 C.A. Tolman, Inorg. Chem. 11 1972 3128.
x
27 D. Bingham, D.E. Webster, P.B. Wells, J. Chem. Soc. Dalton
Ž
.
Trans., 1972 1928.
w
w
x
x
Ž
.
28 B. Corain, G. Puosi, J. Catal. 30 1973 403.
29 C.A. Tolman, J. Am. Chem. Soc. 92 1970 4217.
Ž
.