N. Mariet et al. / Tetrahedron Letters 44 (2003) 5315–5317
5317
tetrachloride with the oxygen atom of the methoxy
group, an oxygen participation occurred to give an
oxonium ion which is attacked by allylsilane with an
overall retention. Then, the coordination of titanium
tetrachloride with the oxygen atom of the bridge pro-
vokes the substitution with inversion. In each case, the
more CꢀO reactive bond is in axial position.
Practical Approach; Oxford University Press: Oxford,
1999.
3. Pellissier, H.; Santelli, M. J. Chem. Soc., Chem. Commun.
1995, 607–608.
4. (a) Douglas, N. L.; Ley, S. V.; Osborn, H. M. I.; Owen, D.
R.; Priepke, H. W. M.; Warriner, S. L. Synlett 1996,
793–795; (b) Hense, A.; Ley, S. V.; Osborn, H. M. I.;
Owen, D. R.; Poisson, J.-F.; Warriner, S. L.; Wesson, K.
E. J. Chem. Soc., Perkin Trans. 1 1997, 2023–2031; (c)
Ley, S. V.; Michel, P. Synlett 2001, 1793–1795; (d) Ley, S.
V.; Baeschlin, D. K.; Dixon, D. J.; Foster, A. C.; Ince, S.
J.; Priepke, H. W. M.; Reynolds, D. J. Chem. Rev. 2001,
101, 53–80.
2. Conclusion
We have shown that allylsilane can react with 1,2-diac-
etals with an high stereoselectivity consistent with a
substitution mechanism controlled by the anomeric
effect.
5. Oil with about 4% of dl-isomers (chiral VPC). 9, 1H
(CDCl3, 300 MHz) l 5.53 (2H, br s), 3.23 (6H, s), 2.44
(2H, 0.5AB, d, J=16.3 Hz), 1.96 (2H, 0.5AB, d, J=16.3
Hz), 1.13 (6H, s); 13C (CDCl3, 75 MHz) l 124.8 (d), 78.0
(s), 49.8 (q), 33.8 (t), 17.8 (q).
Acknowledgements
6. Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413–
4450.
7. 10, oil; structure confirmed by NOESY experiments: we
observed that only the allyl methylene gives cross peaks
with axial hydrogen geminated with oxygen.
8. (a) Kirby, A. J. The Anomeric Effect and Relative
Stereoelectronic Effects at Oxygen, 1st ed.; Springer:
Heidelberg, 1983; (b) Deslongchamps, P. Stereoelectronic
Effects in Organic Chemistry, 1st ed.; Pergamon: Oxford,
1993; (c) Salzner, U. J. Org. Chem. 1995, 60, 986–995.
9. 12, 13 and 14 are oils. For 13 and 14, in the NOESY
experiments, we note cross peaks between the two methyl
groups and the hydroxymethyl group.
N.M. is grateful to the ‘Re´gion Provence-Alpes-Coˆte
d’Azur’ and the CNRS for a grant.
References
1. (a) Mukaiyama, T.; Murakami, M. Synthesis 1987, 1043–
1054; (b) Alexakis, A.; Mangeney, P. Tetrahedron: Asym-
metry 1990, 1, 477–511.
2. (a) Hosomi, A.; Endo, M.; Sakurai, H. Chem. Lett. 1976,
941–942; (b) Santelli, M.; Pons, J.-M. Lewis Acids and
Selectivity in Organic Synthesis; CRC Press: Boca Raton,
FL, 1996; (c) Yamamoto, H. Lewis Acid Reagents: A