Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C5CC06365E
COMMUNICATION
Journal Name
NMR signals for both chlorinated carbons and their respective
adjacent carbons for 1,3-anti dichlorides 13a-13d and 22 were
Prod. Rep., 2011, 28, 15-25; d) T. Umezawa and F. Matsuda,
Tetrahedron Lett., 2014, 55, 3003-3012.
consistently ~1 ppm more downfield than the signals from the 2. a) W.-j. Chung, J. S. Carlson and C. D. Vanderwal, J. Org.
corresponding 1,3-syn dichlorides 20a 20d and 24
-
,
Chem., 2014, 79, 2226-2241; b) W. J. Chung, J. S. Carlson, D. K.
Bedke and C. D. Vanderwal, Angew. Chem.-Int. Edit., 2013, 52,
10052-10055; c) T. Yoshimitsu, R. Nakatani, A. Kobayashi and
T. Tanaka, Org. Lett., 2011, 13, 908-911; d) T. Umezawa, M.
Shibata, K. Kaneko, T. Okino and F. Matsuda, Org. Lett., 2011,
13, 904-907; e) C. Nilewski, N. R. Deprez, T. C. Fessard, D. B. Li,
R. W. Geisser and E. M. Carreira, Angew. Chem.-Int. Edit., 2011,
50, 7940-7943; f) T. Yoshimitsu, N. Fukumoto, R. Nakatani, N.
Kojima and T. Tanaka, J. Org. Chem., 2010, 75, 5425-5437; g) D.
K. Bedke, G. M. Shibuya, A. R. Pereira, W. H. Gerwick and C. D.
Vanderwal, J. Am. Chem. Soc., 2010, 132, 2542-2544; h) T.
Yoshimitsu, N. Fukumoto and T. Tanaka, J. Org. Chem., 2009,
74, 696-702; i) C. Nilewski, R. W. Geisser, M. O. Ebert and E. M.
Carreira, J. Am. Chem. Soc., 2009, 131, 15866-15876; j) C.
Nilewski, R. W. Geisser and E. M. Carreira, Nature, 2009, 457,
573-U576; k) D. K. Bedke, G. M. Shibuya, A. Pereira, W. H.
Gerwick, T. H. Haines and C. D. Vanderwal, J. Am. Chem. Soc.,
2009, 131, 7570-7573; l) G. M. Shibuya, J. S. Kanady and C. D.
Vanderwal, J. Am. Chem. Soc., 2008, 130, 12514-12518; m) K.
C. Nicolaou, N. L. Simmons, Y. Ying , P. M. Heretsch and J. S.
Chen, J. Am. Chem. Soc. 2011, 133, 8134-8137; n) D. X. Hu, F. J.
Seidl, C. Bucher and N. Z. Burns, J. Am. Chem. Soc. 2015, 137,
3795-3798.
respectively. These comparative chemical shifts data thus
supported the stereoselectivity in our dichlorination reactions,
i.e. 1,3-anti diols lead to 1,3-anti dichlorides, 1,3-syn diols lead
to 1,3-syn dichlorides.
Table 4. Carman-Nouguier 13C NMR Analyses.[a]
3. While there are ample of precedents on the preparation of
activated 1,3-dichloride systems, i.e. benzylic, α-carbonyl, etc.,
to the best of our knowledge, complementary stereoselective
methods to access both diastereomers of unactivated, acyclic
aliphatic 1,3-dichlorides are not well precedented in the
literature. Rare examples on the conversion of aliphatic 1,3-
anti diol to the corresponding 1,3-anti dichlorides using PPh3-
NCS activation: Hoffmann, R. W.; Stenkamp, D. Tetrahedron
1999, 55, 7169, and ref 2c.
[a] Chemical shifts are reported relative to residual CHCl3 as an
internal reference (77.0 ppm).
4
a) A. Villalpando, C. E. Ayala, C. B. Watson and R. Kartika, J.
Org. Chem., 2013, 78, 3989-3996; b) C. E. Ayala, A. Villalpando,
A. L. Nguyen, G. T. McCandless and R. Kartika, Org. Lett., 2012,
14, 3676-3679.
In conclusion, we have developed a general tactic for the
synthesis of stereocomplementary aliphatic 1,3-anti and 1,3-
syn dichlorides, enabled by our triphosgene-pyridine
chlorination conditions. The mild nature of this highly
stereoselective method readily tolerated sensitive functional
groups, allowing for the construction of synthetically
challenging complex molecules. Extension of the strategy to
vicinal diols and synthetic application towards chlorosulfolipid
natural products are currently underway in our laboratory.
This publication is based upon work supported by the NSF
under CHE-1464788 and the NIGMS of the NIH under Award
Number R25GM069743 through the Initiative for Maximizing
Student Development (LSU-IMSD) Fellowship award to A.V.
Generous financial support from Louisiana State University
(LSU) College of Science is greatly appreciated. We thank
Professor George Stanley for kindly allowing us to use the GC-
MS instrument in his laboratories.
5. a) K. Miyashita, T. Tsunemi, T. Hosokawa, M. Ikejiri and T.
Imanishi, J. Org. Chem., 2008, 73, 5360-5370; b) J. W. Burton,
E. A. Anderson, P. T. O'Sullivan, I. Collins, J. E. Davies, A. D.
Bond, N. Feeder and A. B. Holmes, Org. Biomol. Chem, 2008, 6,
693-702; c) M. Nogawa, S. Sugawara, R. Iizuka, M. Shimojo, H.
Ohta, M. Hatanaka and K. Matsumoto, Tetrahedron, 2006, 62,
12071-12083; d) P. T. O'Sullivan, W. Buhr, M. A. M. Fuhry, J. R.
Harrison, J. E. Davies, N. Feeder, D. R. Marshall, J. W. Burton
and A. B. Holmes, J. Am. Chem. Soc., 2004, 126, 2194-2207; e)
R. M. Burk and M. B. Roof, Tetrahedron Lett., 1993, 34, 395-
398.
6. J. Farras, C. Serra and J. Vilarrasa, Tetrahedron Lett., 1998, 39,
327-330.
7. The position of the silylether group in the 1,3-syn diols did not
affect the outcome of our dichlorination reaction. We exposed
a mixture of γ- monosilylated 1,3-syn dihydroxy ester 19d and
its β-variant to the reaction conditions, and the GC-MS analysis
of the crude mixture revealed a quantitative conversion of
both substrates to the corresponding 1,3-syn dichloride 20d.
8. C. J. Carman, A. R. Tarpley Jr. and J. H. Goldstein. J. Am. Chem.
Soc. 1971, 93, 2864; b) R. Nouguier, J. M. Surzur and A. Virgili,
Org. Mag. Res., 1981, 15, 155-157.
Notes and References
‡
Undergraduate research participant
1. a) W.-J. Chung and C. D. Vanderwal, Acc. Chem. Res., 2014, 47,
718-728; b) C. Nilewski and E. M. Carreira, Eur. J. Org. Chem,
2012, 1685-1698; c) D. K. Bedke and C. D. Vanderwal, Nat.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins