Journal of the American Chemical Society
Page 4 of 6
Differentiating the Early and Late Stages of Apoptosis Mediated by H2O2.
This work was financially supported by the National Science
Foundation of China (21788102), the Research Grants Council of
Hong Kong (16305518, C6009-17G and A-HKUST605/16), the
Innovation and Technology Commission (ITC-CNERC14SC01
and ITS/254/17), the National Key Research and Development
program of China (2018YFE0190200) and the Science and
Technology Plan of Shen-zhen (JCYJ20160229205601482 and
JCYJ20170818113602462).
1
2
3
4
5
6
7
8
(21) Yuan, Y.; Kwok, R. T. K.; Tang, B. Z.; Liu, B. Targeted
Theranostic Platinum(IV) Prodrug with a Built-In Aggregation-Induced
Emission Light-Up Apoptosis Sensor for Noninvasive Early Evaluation of
2554.
(22) Shi, H.; Kwok, R. T. K.; Liu, J.; Xing, B.; Tang, B. Z.; Liu, B.
Real-Time Monitoring of Cell Apoptosis and Drug Screening Using
Fluorescent Light-Up Probe with Aggregation-Induced Emission
(23) Hong, Y.; Chen, S.; Leung, C. W. T.; Lam, J. W. Y.; Tang, B. Z.
Water-Soluble Tetraphenylethene Derivatives as Fluorescent “Light-up”
Probes for Nucleic Acid Detection and Their Applications in Cell
(24) Liu, S.; Cheng, Y.; Zhang, H.; Qiu, Z.; Kwok, R. T. K.; Lam, J.
W. Y.; Tang, B. Z. In Situ monitoring of RAFT Polymerization by
Tetraphenylethylene-Containing Agents with Aggregation-Induced
6278.
(25) Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.;
Williams, I. D.; Zhu, D.; Tang, B. Z. Synthesis, Light Emission,
Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-
Substituted 2,3,4,5-Tetraphenylsiloles. Chem. Mater. 2003, 15 (7), 1535–
1546.
REFERENCES
9
(1) Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer Statistics, 2017. CA.
(2) Chabner, B. A.; Roberts Jr, T. G. Chemotherapy and the War on
(3) Fan, W.; Shen, B.; Bu, W.; Chen, F.; Zhao, K.; Zhang, S.; Zhou, L.;
Peng, W.; Xiao, Q.; Xing, H.; et al. Rattle-Structured Multifunctional
Nanotheranostics for Synergetic Chemo-/Radiotherapy and Simultaneous
(17), 6494–6503.
(4) Gottesman, M. M.; Fojo, T.; Bates, S. E. Multidrug Resistance in
48.
(5) Holohan, C.; Van Schaeybroeck, S.; Longley, D. B.; Johnston, P. G.
13, 714.
(6) Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive Oxygen Species
Generating Systems Meeting Challenges of Photodynamic Cancer
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(26) Shi, J.; Chang, N.; Li, C.; Mei, J.; Deng, C.; Luo, X.; Liu, Z.; Bo,
Z.; Dong, Q. Y.; Tang, B. Z. Locking the phenyl rings of
tetraphenylethene step by step: understanding the mechanism of
aggregation-induced emission. Chem. Commun. 2012, 48 (81), 10675–
10677.
(7) Liu, S.; Zhang, H.; Li, Y.; Liu, J.; Du, L.; Chen, M.; Kwok, R. T.
K.; Lam, J. W. Y.; Phillips, D. L.; Tang, B. Z. Strategies to Enhance the
Photosensitization: Polymerization and the Donor–Acceptor Even–Odd
(8) Gottesman, M. M.; Fojo, T.; Bates, S. E. Multidrug Resistance in
48.
(9) Guo, L.; Niu, G.; Zheng, X.; Ge, J.; Liu, W.; Jia, Q.; Zhang, P.;
Zhang, H.; Wang, P. Single Near-Infrared Emissive Polymer
Nanoparticles as Versatile Phototheranostics. Adv. Sci. 2017, 4 (10),
1700085.
(10) Zheng, X.; Ge, J.; Wu, J.; Liu, W.; Guo, L.; Jia, Q.; Ding, Y.;
Zhang, H.; Wang, P. Biodegradable Hypocrellin Derivative Nanovesicle
as a Near-Infrared Light-Driven Theranostic for Dually Photoactive
Cancer Imaging and Therapy. Biomaterials 2018, 185, 133–141.
(11) Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.;
Verma, S.; Pogue, B. W.; Hasan, T. Imaging and Photodynamic Therapy:
Mechanisms, Monitoring, and Optimization. Chem. Rev. 2010, 110 (5),
2795–2838.
(12) Sharma, B. R. Infection in Patients with Severe Burns: Causes and
30.
(14) Andón, F. T.; Fadeel, B. Programmed Cell Death: Molecular
Mechanisms and Implications for Safety Assessment of Nanomaterials.
(15) Nagata, S. Apoptosis and Clearance of Apoptotic Cells. Annu. Rev.
(16) Zheng, H.; Wang, F.; Wang, Q.; Gao, J. Cofactor-Free Detection
of Phosphatidylserine with Cyclic Peptides Mimicking Lactadherin. J. Am.
(17) Perfetto, S. P.; Chattopadhyay, P. K.; Roederer, M. Seventeen-
Colour Flow Cytometry: Unravelling the Immune System. Nat. Rev.
(27) Lorenzo, H. K.; Susin, S. A.; Penninger, J.; Kroemer, G. Apoptosis
Inducing Factor (AIF): A Phylogenetically Old, Caspase-Independent
(28) Daugas, E.; Susin, S. A.; Zamzami, N.; Ferri, K. F.; Irinopoulou,
T.; Larochette, N.; Prevost, M.-C.; Leber, B.; Andrews, D.; Penninger, J.;
et al. Mitochondrio-Nuclear Translocation of AIF in Apoptosis and
Necrosis. FASEB J. 2000, 14 (5), 729–739.
(29) Boren, J.; Brindle, K. M. Apoptosis-Induced Mitochondrial
Dysfunction Causes Cytoplasmic Lipid Droplet Formation. Cell Death
(30) Wang, Z. Y.; Jiang, C.; Wu, J. H.; Guo, Q. X.; Yong, Z. A Novel
Palladium-Catalyzed Reaction and Its Application in Preparation of
Derivatives of Stilbazols. 2001, 12 (5), 399–402.
(31) Zheng, Z.; Zhang, T.; Liu, H.; Chen, Y.; Kwok, R. T. K.; Ma, C.;
Zhang, P.; Sung, H. H. Y.; Williams, I. D.; Lam, J. W. Y.; et al. Bright
Near-Infrared Aggregation-Induced Emission Luminogens with Strong
Two-Photon Absorption, Excellent Organelle Specificity, and Efficient
Photodynamic Therapy Potential. ACS Nano 2018, 12 (8), 8145–8159.
(32) Wang, Y.; Chen, M.; Alifu, N.; Li, S.; Qin, W.; Qin, A.; Tang, B.
Z.; Qian, J. Aggregation-Induced Emission Luminogen with Deep-Red
Emission for Through-Skull Three-Photon Fluorescence Imaging of
Mouse. ACS Nano 2017, 11 (10), 10452–10461.
(33) Leung, C. W. T.; Hong, Y.; Chen, S.; Zhao, E.; Lam, J. W. Y.;
Tang, B. Z. A Photostable AIE Luminogen for Specific Mitochondrial
(34) Chen, B.; Le, W.; Wang, Y.; Li, Z.; Wang, D.; Ren, L.; Lin, L.;
Cui, S.; Hu, J. J.; Hu, Y.; et al. Targeting Negative Surface Charges of
Cancer Cells by Multifunctional Nanoprobes. Theranostics 2016, 6 (11),
1887–1898.
(35) Wang, D.; Lee, M. M. S.; Shan, G.; Kwok, R. T. K.; Lam, J. W.
Y.; Su, H.; Cai, Y.; Tang, B. Z. Highly Efficient Photosensitizers with
Far-Red/Near-Infrared Aggregation-Induced Emission for In Vitro and In
Vivo Cancer Theranostics. Adv. Mater. 2018, 30 (39), 1802105.
(36) Gui, C.; Zhao, E.; Kwok, R. T. K.; Leung, A. C. S.; Lam, J. W. Y.;
Jiang, M.; Deng, H.; Cai, Y.; Zhang, W.; Su, H.; et al. AIE-Active
Theranostic System: Selective Staining and Killing of Cancer Cells.
(37) Kumar, R.; Han, J.; Lim, H.-J.; Ren, W. X.; Lim, J.-Y.; Kim, J.-H.;
Kim, J. S. Mitochondrial Induced and Self-Monitored Intrinsic Apoptosis
by Antitumor Theranostic Prodrug: In Vivo Imaging and Precise Cancer
(38) Lan, M.; Guo, L.; Zhao, S.; Zhang, Z.; Jia, Q.; Yan, L.; Xia, J.;
Zhang, H.; Wang, P.; Zhang, W. Carbon Dots as Multifunctional
Phototheranostic Agents for Photoacoustic/Fluorescence Imaging and
(18) Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B.
Z. Aggregation-Induced Emission: Together We Shine, United We Soar!
(19) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.;
Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-Induced
Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole. Chem. Commun. 2001,
18 (0), 1740–1741.
(20) Leung, A. C. S.; Zhao, E.; Kwok, R. T. K.; Lam, J. W. Y.; Leung,
C. W. T.; Deng, H.; Tang, B. Z. An AIE-Based Bioprobe for
ACS Paragon Plus Environment