LETTER
Intramolecular Heck Reaction
3143
(4) For selected synthesis of the teleocidins B, see: (a) Okabe,
K.; Muratake, H.; Natsume, M. Tetrahedron 1991, 47,
8559. (b) Nakatsuka, S.; Masuda, T.; Goto, T. Tetrahedron
Lett. 1987, 28, 3671. (c) For a recent and interesting
approach towards the core of the teleocidins B, see:
(d) Dangel, B. D.; Godula, K.; Youn, S. W.; Sezen, B.;
Sames, D. J. Am. Chem. Soc. 2002, 124, 11856.
(5) (a) Kishi, Y.; Rando, R. R. Acc. Chem. Res. 1998, 31, 163.
(b) Newton, A. C. Chem. Rev. 2001, 101, 2353.
(c) Hinterding, K.; Alonso-Díaz, D.; Waldmann, H. Angew.
Chem. Int. Ed. 1998, 37, 688. (d) Meseguer, B.; Alonzo-
Díaz, D.; Griebenow, N.; Herget, T.; Waldmann, H. Chem.
Eur. J. 2000, 6, 3943.
(6) For some reviews, see: (a) De Meijere, A.; Bräse, S. In
Handbook of Organopalladium Chemistry for Organic
Synthesis; Negishi, E., Ed.; John Wiley and Sons: New
York, 2002, 1223. (b) Shibasaki, M.; Vogl, E. M. J.
Organomet. Chem. 1999, 576, 1. (c) Link, J. T. Org. React.
2002, 60, 157.
(7) (a) Ozawa, F.; Kubo, A.; Hayashi, T. J. Am. Chem. Soc.
1991, 113, 1417. (b) Cabri, W.; Candiani, I.; DeBernardinis,
S.; Francalanci, F.; Penco, S. J. Org. Chem. 1991, 56, 5796.
(c) Fristrup, P.; Le Quement, S.; Tanner, D.; Norrby, P.-O.
Organometallics 2004, 23, 6160.
(8) (a) Addition of silver salts to the reaction mixture often
allows the use of aryl and vinyl halides in AIHR, see ref. 6.
(b) For a notorious example of IAHR where the ‘neutral’
pathway affords higher enantioselectivity than the
corresponding ‘cationic’, see: Overman, L. E.; Poon, D. J.
Angew. Chem., Int. Ed. Engl. 1997, 36, 518.
and 11, respectively) suggests that ideally the ligand bite
angle should be slightly less than 90°.
To the best of our knowledge, this is the first example
where, having available the possibility for a 6-exo-trig
path, the IHR occurs exclusively to afford high yields (up
to 94%) of the 5-endo-trig cyclized product. This result is
likely to be a consequence of two factors: i) the steric bulk
of the neighboring quaternary carbon, which positions and
eventually locks the C12–C13 double bond of 17e in the
proximity of the oxidatively added Pd; and ii) in the mi-
gratory insertion step, occurring in the coordination
sphere of Pd, the bond formation is initiated at a long C–
C distance, and can thus occur in geometries that are dis-
tinctly different from those allowed in systems for which
the Baldwin rules were originally developed.9a,b
Finally, it is noted that this serendipitous finding could po-
tentially be used as an entry to natural products such as the
trekentrins [e.g., cis-trekentrin A (21)]26 and the herbin-
doles [e.g., herbindole B (22)]27 (Figure 3), taking full ad-
vantage of the regioselective Claisen rearrangement–5-
endo-trig Heck cyclization sequence.
N
H
N
(9) (a) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976,
734. (b) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976,
736. (c) Grigg, R.; Sridharan, V.; Stevenson, P.;
Sukirthalingam, S.; Worakun, T. Tetrahedron 1990, 46,
4003. (d) See ref. 6.
(10) Indole 7 (which for R = Et is indole 13) has previously been
used in synthetic studies towards Lyngbyatoxin A, see:
Moody, C. J. J. Chem. Soc., Chem. Commun. 1983, 1129.
(11) For selected reviews on the Claisen rearrangement, see:
(a) Bennett, G. B. Synthesis 1977, 589. (b) Lutz, R. P.
Chem. Rev. 1984, 84, 205. (c) Ito, H.; Taguchi, T. Chem.
Soc. Rev. 1999, 28, 43.
H
cis-trikentrin A (21)
herbindole B (22)
Figure 3 Examples of natural products containing a 6,7-cyclopen-
tena-indole core.
Acknowledgment
The Portuguese Foundation for Science and Technology is grateful-
ly acknowledged for providing the financial support for this work.
Professor Robert Madsen is acknowledged for kindly providing
some of the ligands used in the Heck reaction screening.
(12) Hemetsberger, H.; Knittel, D.; Weidmann, H. Monatsh.
Chem. 1970, 101, 161.
(13) Shinmon, N.; Cava, M. J. Chem. Soc., Chem. Commun.
1980, 1020.
References and Notes
(14) Scheinmann, F.; Barner, R.; Schmid, H. Helv. Chim. Acta
1968, 51, 1603.
(15) (a) Karanewsky, D. S.; Kishi, Y. J. Org. Chem. 1976, 41,
3026. (b) Falling, S. N.; Rapoport, H. J. Org. Chem. 1980,
45, 1260. (c) Fukuyama, T.; Tangqing, L.; Peng, G.
Tetrahedron Lett. 1994, 35, 2145.
(1) (a) Takashima, M.; Sakai, H. Bull. Agric. Chem. Soc. Jpn.
1960, 24, 647. (b) Takashima, M.; Sakai, H. Bull. Agric.
Chem. Soc. Jpn. 1960, 24, 652. (c) Takashima, M.; Sakai,
H.; Arima, K. Agric. Biol. Chem. 1962, 26, 660.
(d) Takashima, M.; Sakai, H.; Arima, K. Agric. Biol. Chem.
1962, 26, 669.
(16) Procedure for the Preparation of 17a.
A solution of indole 13 (1.42 g, 4.16 mmol, 1.0 equiv),
HMDS (8.7 mL, 41.8 mmol, 10 equiv) and dimethylaniline
(30 mL) in a closed, thick-wall glass container was inserted
in a salt bath (53% KNO3, 40% NaNO2 and 7% NaNO3, by
weight) at 195 °C until TLC showed no more starting
material (aprox. 6–7 h). After reaching r.t., the reaction
mixture was partitioned between Et2O (150 mL) and 3 M aq
HCl (150 mL); the organic layer was further washed with
3 M aq HCl (100 mL), aq NaHCO3 (two portions of 120
mL), brine (50 mL) and dried (Na2SO4). The solvent was
removed under reduced pressure to afford a tan-colored oil,
which was dissolved in EtOH (20 mL). The resulting
solution was cooled to ice-bath temperature and treated with
3 M aq HCl (2.5 mL). After approx. 10 min, the reaction
(2) (a) Fujiki, H.; Sugimura, T. Cancer Surv. 1983, 2, 539.
(b) Hitotsuyanagi, Y.; Fujiki, H.; Suganuma, M.; Aimi, N.;
Sakai, S.; Endo, Y.; Sugimura, T. Chem. Pharm. Bull. 1984,
32, 4233. (c) Sakai, S.; Aimi, N.; Yamaguchi, K.; Watanabe,
C.; Hitotsuyanagi, Y.; Shudo, K.; Itai, A. Chem. Pharm.
Bull. 1984, 32, 354.
(3) The numbering system of teleocidins is defined in the
following order of preference: the indole ring, the nine-
membered lactam ring, and the other substituents.
Synlett 2006, No. 18, 3140–3144 © Thieme Stuttgart · New York