Table 6 Main molecular parameters which affect antiferromagnetic coupling
b
ꢀ
Compound
a(Cu1–OCu2)/ꢀ
t
Cu1/tCu2
/
d(ꢀ)a
l(ꢀ)
2J/cmꢁ1
ꢁ280
Ref.
6
[Cu2L(N3)2.5](ClO4)0.5ꢂ(H2O)c
134.5(4)
132.3(5)
111.5(1)
109.3(2)
109.6(1)
distorted (sp)
distorted (sp)
0.12/0.01
—
—
83.6(4)
71.4(4)
81.2(3)
81.6(2)
81.8(2)
Complex 1
Complex 2
Complex 3
18.2
17.1
16.5
ꢁ109.8
ꢁ103.9
ꢁ95.9
This work
This work
This work
0.10/0.05
0.10/0.04
LH ¼ 2,6-bis((N-methylpiperazino)methyl)–4-chlorophenol.a Out-of-plane shift angle: dihedral angle formed between the (m-phenoxide) and
b
c
Cu1–Cu2–O5 planes. Dihedral angle between two adjacent basal planes. This compound contains two different dinuclear molecules in the
asymmetric unit.
copper ion is slightly distorted square pyramidal (cf. structure
description). The dx2ꢁy2 magnetic orbitals (containing the
References
1
P. Dapporto, M. Formica, V. Fusi, L. Giothi, M. Micheloni,
P. Paoli, R. Pontellini and P. Rossi, Inorg. Chem., 2001, 40, 6186.
C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 7017.
J. M. Lehn, Pure Appl. Chem., 1977, 49, 857.
D. J. Gam and J. M. Gam, Science, 1984, 183, 4127.
J. M. Lehn, Angew. Chem., Int. Ed. Engl., 1988, 27, 89.
P. Guerriero, S. Tamburini and P. A. Vigato, Coord. Chem. Rev.,
1995, 110, 17.
unpaired electron) point toward the bridging phenoxide oxy-
gen atoms. This situation is favourable to strong antiferro-
magnetic interactions. On the other hand, it is interesting to
note that the dihedral angle (l) between the adjacent basal
planes such as N1–N2–N5–O5 and N3–N4–O3–O5 is large
in 1, 2 and 3; equal to 81.2(3), 81.6(2) and 81.8(2)ꢀ, respec-
tively. This situation without a doubt reduces dramatically
the overlap between magnetic orbitals. However there is suffi-
2
3
4
5
6
7
8
9
C. Bazzsicalupi, A. Bencini, V. Fusi, C. Giorgi, P. Paoletti and
B. Vattacoli, Inorg. Chem., 1998, 37, 941 and references therein.
Q. Lu, J. J. Reibespiens, A. E. Martell, R. I. Carroll and A.
Clearfield, Inorg. Chem., 1996, 35, 7246.
T. Koike, M. Inoue, E. Kinmura and M. J. Shiro, J. Am. Chem.
Soc., 1996, 118, 3091.
2
cient overlap of each Cu(dx ꢁy2) orbital with the phenoxide
oxygen p orbital to generate negative J values of intermediate
magnitude, i.e. ꢁ109.8, ꢁ103.9 and ꢁ95.9 cmꢁ1. Undoubtedly,
the J value would have been more negative if the basal planes
had been coplanar.65,66 Another significant feature observed
in 1, 2 and 3, which can reduce any antiferromagnetic term,
is associated with the dihedral angle (d) between the plane
formed by Cu1–Cu2–O5 and the O5–C14–C17–C12 plane,
which is 18.2(2), 17.1(3), and 16.5(2)ꢀ for 1, 2 and 3 respec-
tively. Since these values are > 0ꢀ, they must increase the
ferromagnetic contribution, which effectively reduces the anti-
ferromagnetic contribution as previously reported.67,68 In
Table 6, we have gathered some structural parameters of the
complexes 1, 2, 3 and a similar complex reported in the litera-
ture.34 The most important difference is observed in the angle a
(Cu1–O–Cu2); this is ca. 110ꢀ in 1, 2 and 3, while in
[Cu2L(N3)2.5](ClO4)0.5ꢂ(H2O) it is ca. 134 and 132ꢀ. A smaller
value of a would cause a diminution of the antiferromagnetic
coupling. The experimental 2J values are consistent with this
observation. Obviously, more examples are aimed at relating
magnetic properties and structural features for this type of
bridging.
10 C. Bazzcalupi, A. Bencini, A. Bianchi, V. Fusi, E. Gracia Espan˜a,
C. Giorgi, J. M. Llinares, J. A. Ramirez and B. Valtancoli, Inorg.
Chem., 1999, 38, 620 and references therein.
´
11 T. Gajda, A. Jancso, S. Mikkola, H. Lo¨nnberg and H. Sirges,
J. Chem. Soc., Dalton Trans., 2002, 1757.
12 J. Sanmartin, M. R. Bermejo, A. M. Garcia-Deibe, O. R.
Nascimento, L. Lezama and T. Rojo, J. Chem. Soc., Dalton
Trans., 2002, 1030.
13 C. E. Niederhoffer, J. H. Timmons and A. G. Martell, Chem. Rev.,
1984, 84, 137.
14 W. N. Lipscomb and N. Stra¨ter, Chem. Rev., 1996, 96, 2375.
15 D. E. Wilcox, Chem. Rev., 1996, 96, 2435.
16 J. W. Whittaker, Metalloenzymes Involving Amino Acid Residue
Related Radicals, eds. H. Sigel and A. Sigel, Marcel Dekker,
New York, 1994, vol. 30, p. 315.
17 P. F. Knowles and N. Ito, Perspectives in Bio-inorganic Chemistry,
Jai Press, London, 1994, vol. 2, p. 207.
18 J. W. Whittaker and M. M. Whittaker, Pure Appl. Chem., 1998,
70, 903.
19 E. I. Solomon, U. M. Sundaram and T. E. Machonkin, Chem.
Rev., 1996, 96, 2563.
20 D. M. Dooley, J. Biol. Inorg. Chem., 1996, 4, 1.
21 N. K. Williams and J. P. Klinman, J. Mol. Catal. B.: Enzym.,
1999, 8, 95.
Conclusion
22 Y. Wang, J. L. DuBois, B. Hedman, K. O. Hodgson and T. D. P.
Stack, Science, 1998, 279, 537.
Here we present the synthesis, electrochemical study, crystal
structure and low-temperature magnetic study of three dimeric
singly phenoxo-bridged copper(II) complexes. From the for-
going discussion it is found that the phenoxo group of one
Schiff base coordinates to two copper(II) centres. All the
complexes show moderate antiferromagnetic behaviour at low
temperature and magnetic interaction is dependent on the
phenoxo bridge between the copper(II) centres. Thiocyanate,
azide or cyanate act as terminal ligands.
23 P. Chaudhuri, M. Hess, U. Flo¨rke and K. Wieghardt, Angew.
Chem., Int. Ed., 1998, 37, 2217.
24 P. Chaudhuri, M. Hess, T. Weyhermuller and K. Wieghardt,
¨
Angew. Chem., Int. Ed., 1999, 38, 1095.
25 P. Chaudhuri, M. Hess, J. Mu¨ller, K. Hildenbrand, E. Bill,
T. Weyhermuller and K. Wieghardt, J. Am. Chem. Soc., 1999,
121, 9599.
¨
26 A. S. Hay, J. Polym. Sci., Part A: Polym. Chem., 1998, 36, 505.
27 H. Higashimura, M. Kubota, A. Shiga, K. Fujisawa, Y.
Morooka, H. Uyama and S. Kobayashi, Macromolecules, 2000,
33, 1986 and references therein.
28 B. A. Jazdzewski and W. B. Tolman, Coord. Chem. Rev., 2000,
200–202, 633.
Acknowledgements
29 B. Linzen, N. M. Soeter, A. F. Riggs, H. J. Schneider, W.
Schartau, M. D. Moore, E. Yokota, P. Q. Beherens, H.
Nakashima, T. Takagi, T. Remoto, J. M. Vewreijken, H. J.
Bak, J. J. Beintema, A. Volbeda, W. P. J. Gaykema and
W. G. J. Hol, Science, 1985, 229, 519.
30 B. A. Jazdzewski, P. L. Holland, M. Pink, V. G. Young jr.,
D. J. E. Spencer and W. B. Tolman, Inorg. Chem., 2001, 40,
6097 and references therein.
We thank DST, AICTE, CSIR, UGC (New Delhi) for
financial support. Our thanks are also extended to Dr S.
Bhattacharya, Department of Chemistry, Jadavpur Univer-
sity, for his valuable discussion in the cyclic voltametric
studies. Dr M. S. El Fallah is grateful for the financial support
´
given by the Ministerio de Ciencia y Tecnologıa (Programa
´
Ramon y Cajal).
31 J. Sanmartin, M. R. Bermejo, A. M. Garcia-Deibe, O. Piro and
E. E. Castellano, Chem. Commun., 1999, 1953.
New J. Chem., 2003, 27, 1360–1366
1365