Communication
ChemComm
On the other hand, 4-MeCN does not have a site suitable for
15359–15367; (c) L. K. S. von Krbek, D. A. Roberts, B. S. Pilgrim,
C. A. Schalley and J. R. Nitschke, Angew. Chem., Int. Ed., 2018, 43,
+
trapping a Na cation to form 4-MeCN-Na. In fact, the optimization
14121–14124; (d) A. Ravi, R. S. Krishnarao, T. A. Shumilova,
+
of an initial structure where the Na binds into a nitrogen atom
V. N. Khrustalev, T. R u¨ ffer, H. Lang and E. A. Kataev, Org. Lett.,
2018, 20, 6211–6214.
in 4-MeCN (the separation: 2.4 Å) resulted in the structure for
4
5
(a) J. Rebek, S. E. Trend, R. V. Wattley and S. Chakravorti, J. Am.
Chem. Soc., 1979, 101, 4333–4337; (b) J. Rebek and R. V. Wattley,
J. Am. Chem. Soc., 1980, 102, 4853–4854; (c) J. Rebek and L. Marshall,
J. Am. Chem. Soc., 1983, 105, 6668–6670; (d) F. Gavina, S. V. Luis,
A. M. Costero, M. I. Burguete and J. Rebek, J. Am. Chem. Soc., 1988,
4
-MeCN-Na in Fig. 4b-ii, equivalent to that in Fig. S49a-ii (ESI†).
To generate the structure for 4-MeCN-Na (Fig. 4b-ii) from 4-MeCN
+
(Fig. 4b-i) and Na , desolvation of the MeCN from 4-MeCN is
necessary to allow negatively charged oxygen atoms to capture
the Na cation. After encapsulation of Na into 4, the MeCN is again
solvated to the captured the Na , resulting in the optimized 4-Na
solvated by MeCN. This complicated process can proceed, only
when MeCN can be desolvated from 4-MeCN by overcoming
the binding energy between 4 and MeCN, calculated to be
110, 7140–7143.
+
+
(a) M. R. Kita and A. J. M. M. Miller, J. Am. Chem. Soc., 2014, 136,
14519–14529; (b) J. Grajeda, M. R. Kita, L. C. Gregor, P. S. White and
A. J. M. Miller, Organometallics, 2016, 35, 306–316; (c) L. C. Gregor,
J. Grajeda, M. R. Kita, P. S. White, A. J. Vetter and A. J. M. Miller,
Organometallics, 2016, 35, 3074–3086; (d) A. M. Camp, M. R. Kita,
J. Grajeda, P. S. White, D. A. Dickie and A. J. M. Miller, Inorg. Chem.,
2017, 56, 11141–11150; (e) J. B. Smith, S. H. Kerr, P. S. White and
A. J. M. Miller, Organometallics, 2017, 36, 3094–3103; ( f ) M. R. Kita
and A. J. M. Miller, Angew. Chem., Int. Ed., 2017, 56, 5498–5502.
+
ꢀ1
12.7 kcal mol . Therefore, the experimental findings on the
positive allosteric effect can be qualitatively understood from the
DFT calculations. While MeCN was fully encapsulated in 4 via
induced-fit, the flexibility of ethylene oxide chain was reduced
by the coordination to AuCl in [AuCl(4-MeCN)], resulting in less
structural change after the Na insertion where MeCN rotates 901
in a counterclockwise fashion (Fig. 4a-i and a-ii).
In the present study, 12-dibenzoarsacrown-4, 15-dibenzo-
arsacrown-5, 18-dibenzocrown-6, and 21-dibenzoarsacrown-7 were
synthesized as the first examples of arsacrowns. It has been
demonstrated that the arsenic and oxygen atoms can effectively
interact with soft and hard metals, respectively. Bimetallic complex
6 C. Yoo, H. M. Dodge and A. J. M. Miller, Chem. Commun., 2019,
5, 5047.
7
5
(a) L. W. Wei, A. Bell, S. Warner, I. D. Williams and S. J. Lippard,
J. Am. Chem. Soc., 1986, 108, 8302–8303; (b) L. W. Wei, A. Bell,
K. H. Ahn, M. M. Holl, S. Warner, I. D. Williams and S. J. Lippard,
Inorg. Chem., 1990, 29, 825–837; (c) P. Pongr ´a cz, H. Szentj ´o bi,
T. T o´ th, P. Huszthy and L. Koll ´a r, Mol. Catal., 2017, 439, 128–133;
+
(
d) H. Szab ´o -Szentj ´o bi, I. Majoros, A. M ´a rton, I. Leveles,
B. G. V ´e rtessy, M. D ´e k ´a ny, T. T ´o th and P. Huszthy, Synthesis, 2020,
870–2882.
(a) Y. Morisaki, H. Imoto, K. Tsurui and Y. Chujo, Org. Lett., 2009,
1, 2241–2244; (b) Y. Morisaki, H. Imoto, K. Hirano, T. Hayashi and
2
8
9
1
Y. Chujo, J. Org. Chem., 2011, 76, 1795–1803; (c) Y. Morisaki, R. Kato
and Y. Chujo, J. Org. Chem., 2013, 78, 2769–2774; (d) Y. Morisaki,
R. Kato and Y. Chujo, ChemistryOpen, 2016, 5, 325–330.
(a) J. Powell, A. Kuksis, C. J. May, P. E. Meindl and S. J. Smith,
Organometallics, 1989, 8, 2933–2941; (b) Y. Li, B. Ma, Y. He, F. Zhang
and Q. H. Fan, Chem. – Asian J., 2010, 5, 2454–2458; (c) I. Mon,
D. A. Jose and A. Vidal-Ferran, Chem. – Eur. J., 2013, 19, 2720–2725;
6
of 21-dibenzoarsacrown-7 with gold(I) chloride and NaPF caused
drastic conformational change from the monometallic complexes.
The metal-coordination-driven transformation will lead to enzyme-
mimic catalytic systems with allosteric regulation. We are now
investigating the synthesis of more diverse arsacrown derivatives,
and development of bimetallic catalytic reactions. The results will be
reported in future publications.
(
d) L. Rovira, M. Vaquero and A. Vidal-Ferran, J. Org. Chem., 2015,
80, 10397–10403; (e) L. Rovira, H. Fern ´a ndez-P ´e rez and A. Vidal-
Ferran, Organometallics, 2016, 35, 528–533; ( f ) M. Vaquero and
A. Vidal-Ferran, Chem. Commun., 2016, 52, 11038–11051.
This work was supported by JSPS KAKENHI, grant Number
1
0 W. Levaso and G. Reid, Comprehensive Coordination Chemistry II, ed.
J. A. McCleverty and T. J. Meyer, Elsevier Science, Amsterdam,
The Netherlands, 2004, vol. 1, ch. 1.16, pp. 377–389.
19H04577 (Coordination Asymmetry) and 20H02812 (Grant-in-
Aid for Scientific Research (B)) to HI.
1
1
1
1
1 For reviews, see: (a) H. Imoto, Polym. J., 2018, 50, 837–846;
(
b) H. Imoto and K. Naka, Chem. – Eur. J., 2019, 25, 1883–1894.
2 T. Kato, S. Tanaka and K. Naka, Chem. Lett., 2015, 44,
476–1478.
3 H. Imoto, C. Yamazawa, S. Tanaka, T. Kato and K. Naka, Chem. Lett.,
017, 46, 821–823.
4 A. Bondi, J. Phys. Chem., 1964, 68, 441–451.
Conflicts of interest
1
There are no conflicts to declare.
2
Notes and references
1
(a) C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 2495–2496;
b) C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 7017–7036.
For reviews, see: (a) C. J. Pedersen, Angew. Chem., Int. Ed. Engl., 1988,
(
2
2
1
7, 1021–1027; (b) J. S. Bradshaw and R. M. Izatt, Acc. Chem. Res.,
997, 30, 338–345; (c) G. W. Gokel, W. M. Leevy and M. E. Weber,
Chem. Rev., 2004, 104, 2723–2750; (d) Z. Liu, S. K. M. Nalluri and
J. F. Stoddart, Chem. Soc. Rev., 2017, 46, 2459–2478; (e) J. L. Atwood,
Comprehensive Supramolecular Chemistry II, ed. G. W. Gokel,
S. Negin and R. Cantwell, Elsevier, Amsterdam, 2017, pp. 3–48.
For recent papers, see: (a) L. K. S. von Krbek, A. J. Achazi,
M. Solleder, M. Weber, B. Paulus and C. A. Schalley, Chem. – Eur.
J., 2016, 22, 15475–15484; (b) L. Moreira, J. Calbo, J. Arag ´o ,
B. M. Illescas, I. Nierengarten, B. Delavaux-Nicot, E. Ort ´ı ,
N. Mart ´ı n and J.-F. Nierengarten, J. Am. Chem. Soc., 2016, 138,
3
2016 | Chem. Commun., 2021, 57, 2013ꢀ2016
This journal is The Royal Society of Chemistry 2021