ORGANIC
LETTERS
2
012
Vol. 14, No. 19
122–5125
Asymmetric Addition of Alkoxy Ethynyl
Anion to Chiral N‑Sulfinyl Imines
Charlie Verrier, S ꢀe bastien Carret, and Jean-Francois Poisson*
5
D eꢀ partement de Chimie Mol eꢀ culaire (SERCO), UMR-5250, ICMG FR-2607, CNRS,
Universit eꢀ Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
Received August 30, 2012
ABSTRACT
The addition of lithiated ynol ethers to chiral N-sulfinyl imines proceeds in high yield and diastereoselectivity. The selectivity is completely
reversed by the addition of boron trifluoride. These alkoxypropargyl sulfinamides can be reduced to afford enol ethers, selectively oxidized to
busyl derivatives, or the ynol ether can be hydrolyzed to afford β-amino esters.
1
Heterosubstituted alkynes such as ynamines, ynamides,
and ynol ethers have received considerable attention over
the past decade due to their particular structure and
synthetic potential as versatile key intermediates in organic
chemistry. While the synthetic utility of ynamides has
electron-rich alkynes have recently found applications
3
in cycloadditions, gold catalysis, or carbocupration. The
ynol ether moiety is generally formed from a pre-existing
function on the molecule, mainly by two methods: from
4
an ester or a carbonyl derivative, or by oxidation of a
2
5
terminal alkyne. In a complementary fashion, the ynol
been particularly studied, their oxygenated analogues,
ynol ethers, are still underexploited. These oxygenated
ether can be introduced by nucleophilic addition of an
alkoxy ethynyl anion to a carbonyl derivative. This second
strategy is very much underdeveloped, with only a few
reports on the addition of lithiated alkoxy ethyne to
(
1) For reviews, see: (a) DeKorver, K. A.; Li, H. Y.; Lohse, A. G.;
Hayashi, R.; Lu, Z. J.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110,
6
7
5064–5106. (b) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed.
ketone and tosylimine.
2010, 49, 2840–2859. (c) Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.;
Rameshkumar, C.; Wei, L. L. Tetrahedron 2001, 57, 7575–7606.
2) For a selection of recent examples, see: (a) Smith, D. L.;
Goundry, W. R. F.; Lam, H. W. Chem. Commun. 2012, 48, 1505–
(
(4) (a) Sosa, J. R.; Tudjarian, A. A.; Minehan, T. G. Org. Lett. 2008,
10, 5091–5094. (b) Kowalski, C. J.; Lal, G. S.; Haque, M. S. J. Am.
Chem. Soc. 1986, 108, 7127–7128. See also: (c) Jouvin, K.; Bayle, A.;
Legrand, F.; Evano, G. Org. Lett. 2012, 14, 1652–1655.
1507. (b) Saito, N.; Ichimaru, T.; Sato, Y. Org. Lett. 2012, 14, 1914–
1917. (c) Kerr, D. J.; Miletic, M.; Chaplin, J. H.; White, J. M.; Flynn,
B. L. Org. Lett. 2012, 14, 1732–1735. (d) Garcia, P.; Evanno, Y.; George,
P.; Sevrin, M.; Ricci, G.; Malacria, M.; Aubert, C.; Gandon, V. Chem.
Eur. J. 2012, 18, 4337–4344. (e) DeKorver, K. A.; Wang, X. N.; Walton,
M. C.; Hsung, R. P. Org. Lett. 2012, 14, 1768–1771. (f) Dateer, R. B.;
Shaibu, B. S.; Liu, R. S. Angew. Chem., Int. Ed. 2012, 51, 113–117.
(5) (a) Julia, M.; Saint-Jalmes, V. P.; Pl ꢀe , K.; Verpeaux, J.-N.;
Hollingworth, G. Bull. Soc. Chim. Fr. 1996, 133, 15–24. (b) Julia, M.;
Saint-Jalmes, V. P.; Verpeaux, J.-N. Synlett 1993, 1993, 233–234.
(c) Pericas, M. A.; Serratosa, F.; Valenti, E. Tetrahedron 1987, 43,
2311–2316. (d) Stang, P. J.; Surber, B. W. J. Am. Chem. Soc. 1985,
107, 1452–1453.
(g) Cao, J.; Xu, Y. P.; Kong, L.; Cui, Y. M.; Hu, Z. Q.; Wang, G. H.;
Deng, Y.; Lai, G. Q. Org. Lett. 2012, 14, 38–41. (h) Schotes, C.; Mezzetti,
A. Angew. Chem., Int. Ed. 2011, 50, 3072–3074.
(6) (a) Darses, B.; Greene, A. E.; Poisson, J. F. J. Org. Chem. 2012,
77, 1710–1721. (b) Rieder, C. J.; Windberg, K. J.; West, F. G. J. Am.
Chem. Soc. 2009, 131, 7504–7505. (c) Clark, J. S.; Elustondo, F.; Trevitt,
G. P; Boyall, D.; Robertson, J.; Blake, A.; Wilson, C.; Stammen, B.
Tetrahedron 2002, 58, 1973. (d) MaGee, D. I.; Rameseshan, M.; Leach,
J. D. Can. J. Chem. 1995, 73, 2111–2118. (e) Loeffler, A.; Himbert, G.
Synthesis 1992, 495. (f) Raucher, S.; Bray, B. L. J. Org. Chem. 1987, 52,
2332–2333. (g) Tankard, M. H.; Whitehurst, J. S. Tetrahedron 1974, 30,
451–454.
(7) (a) Mak, X. Y.; Ciccolini, R. P.; Robinson, J. M.; Tester, J. W.;
Danheiser, R. L. J. Org. Chem. 2009, 74, 9381–9387. (b) Hashmi,
A. S. K.; Rudolph, M.; Huck, J.; Frey, W.; Bats, J. W.; Hamzi ꢀc , M.
Angew. Chem., Int. Ed. 2009, 48, 5848–5852.
(
3) For selected recent examples, see: (a) Minami, Y.; Shiraishi,
Y.; Yamada, K.; Hiyama, T. J. Am. Chem. Soc. 2012, 134, 6124–6127.
b) Tran, V.; Minehan, T. G.Org. Lett. 2011, 13, 6588–6591. (c)Miyauchi,
Y.; Kobayashi, M.; Tanaka, K. Angew. Chem., Int. Ed. 2011, 50,
(
1
0922–10926. (d) Mejuch, T.; Botoshansky, M.; Marek, I. Org. Lett.
2
011, 13, 3604–3607. (e) Davies, P. W.; Cremonesi, A.; Martin, N.
Chem. Commun. 2011, 47, 379–381. (f) Yamasaki, R.; Terashima, N.;
Sotome, I.; Komagawa, S.; Saito, S. J. Org. Chem. 2010, 75, 480–483.
(
g) Qi, X.; Ready, J. M. Angew. Chem., Int. Ed. 2008, 47, 7068–7070.
h) Engel, D. A.; Dudley, G. B. Org. Lett. 2006, 8, 4027–4029. See also:
References 6 and 7.
(
1
0.1021/ol302392k r 2012 American Chemical Society
Published on Web 09/20/2012