Reaction between Cl and CH3OCl at 295 K
J. Phys. Chem., Vol. 100, No. 43, 1996 17201
(11) Benson, S. W. Thermochemical Kinetics; Wiley; New York, 1976.
(12) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.;
Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina,
M. J. Chemical Kinetics and Photochemical Data for Use in Stratospheric
Modeling; JPL Publication 94-26; Pasadena, 1994.
(13) Finkbeiner, M.; Neeb, P.; Horie, O.; Moortgat, G. K. Fresenius J.
Anal. Chem. 1995, 351, 521.
(14) Moortgat, G. K.; Cox, R. A.; Schuster, G.; Burrows, J. P.; Tyndall,
G. S. J. Chem. Soc., Faraday Trans. 2 1989, 809.
(15) Raber, W.; Moortgat, G. K. In Progress and Problems in
Atmospheric Chemistry; Barker, J. R., Ed.; World Scientific Press: Sin-
gapore, 1996; Vol. 3, pp 318-373.
(16) Hsu, K. J.; DeMore, W. B. J. Phys. Chem. 1995, 99, 1235.
(17) Su, F.; Calvert, J. G.; Shaw, J. S. J. Phys. Chem. 1979, 25, 3185.
(18) Veyret, B.; Lesclaux, R.; Rayez, M.; Rayez, J.; Cox, R. A.;
Moortgat, G. K. J. Phys. Chem. 1989, 93, 2368. Burrows, J. P.; Moortgat,
G. K.; Tyndall, G. S.; Cox, R. A.; Jenkin, M. E.; Hayman, G. D.; Veyret,
B. J. Phys. Chem. 1989, 93, 2375.
(19) Su, F.; Calvert, J. G.; Shaw, J. H.; Niki, H.; Maker, P. D.; Savage,
C. M.; Breitenbach, L. D. Chem. Phys. Lett. 1979, 65, 221.
(20) Vaghjiani, G. L.; Ravishankara, A. R. J. Phys. Chem. 1989, 93,
1948.
and ClOO, as assumed in the original modeling study of Crutzen
et al.3 and confirmed in this laboratory.4 Indeed the net reaction
above is also identical to that obtained when CH3OCl is
photolyzed to CH3O + Cl.9
Therefore, as the loss processes for CH3OCl are relatively
fast and not rate limiting in any of the catalytic reaction schemes
(e.g. above) that can be written, its formation in reaction 1
should not significantly alter the role of the Cl atom initiated
methane oxidation in modifying the O3 depletion mechanism
proposed by Crutzen et al.3
This assumption could be confirmed in the box model study,
which returned practically unaltered O3 loss rates with and
without reaction 2. Indeed, further test calculations (not shown)
indicate that even completely neglecting the formation of
CH3OCl in reaction 1b (as in ref 3) does not affect the calculated
ozone loss, as already suggested by Crowley et al.9
5. Conclusions
(21) Curtis, A. R.; Sweetenham, W. P. Facsimile program. AERE
Report R-12805; HMSO: Londong, 1987.
(22) Maric, D.; Burrows, J. P.; Meller, R.; Moortgat, G. K. J. Photochem.
Photobiol. A 1993, 70, 205.
(23) Meller, R. Diploma Thesis, University of Mainz, Germany, 1991
(data measured in this laboratory).
(24) Libuda, H. G.; Zabel, F.; Fink, E. H.; Becker, K. H. J. Phys. Chem.
1990, 94, 5860.
(25) Nielsen, O. J.; Sidebottom, H. W.; Donlon, M.; Treacy, J. Chem.
Phys. Lett. 1991, 178, 163.
(26) Nielsen, O. J.; Sidebottom, H. W.; Donlon, M.; Treacy, J. Int. J.
Chem. Kinet. 1991, 23, 1095.
(27) Kukui, A.; Benter, Th.; Schindler, R. N. Data presented at the 2nd
Euroconference, “6th sensing the atmosphere”, Marbella, Spain, 1996.
(28) Mu¨ller, R.; Crutzen, P. J. J. Geophys. Res. 1993, 98, 20483.
(29) Mu¨ller, R.; Peter, Th.; Crutzen, P. J.; Oelhaf, H.; Adrian, G. P.;
Clarmann, Th. v.; Wegner, A.; Schmidt, U.; Lary, D. Geophys. Res. Lett.
1994, 21, 1427.
The reaction between Cl and CH3OCl proceeds with a room
temperature rate constant of (6.1 ( 0.2) × 10-11 cm3 molecule-1
s-1. At the same temperature, chlorine abstraction dominates
product formation (ca. 80%) with only a ca. 20% contribution
from H atom abstraction. The fate of CH3OCl in the polar
stratosphere will be determined by competition between pho-
tolysis and reaction with Cl atoms. As most reactive encounters
between Cl and CH3OCl result in Cl2 formation, both loss
processes give essentially the same net conversion of O3.
Acknowledgment. This work was funded in part by the CEC
Project EV5V-CT93-0338, CABRIS, within the CEC Environ-
ment Programme.
(30) Mu¨ller, R.; Brenninkmeijer, C. A. M.; Crutzen, P. J. A large 13CO
deficit in the lower Antarctic stratosphere due to “ozone hole” chemistry:
Part II Modelling (1996). Geophys. Res. Lett. 1996, 23, 2129.
(31) Lary, D. J.; Pyle, J. A. J. Atmos. Chem. 1991, 13, 373.
(32) Fahey, D. W.; Kelly, K. K.; Kawa, S. R.; Tuck, A. F.; Loewenstein,
M.; Chun, K. R.; Heidt, L. E. Nature 1990, 344, 321.
(33) Kelly, K. K.; Tuck, A. F.; Heidt, L. E.; Loewenstein, M.; Podolske,
J. R.; Strahan, S. E.; Vedder, J. F. Geophys. Res. Lett. 1990, 17, 465.
(34) Russell, J. M., III; Gordley, L. L.; Park, J. H.; Drayson, S. R.; Tuck,
A. F.; Harries, J. E.; Cicerone, R. J.; Crutzen, P. J.; Frederick, J. E. J.
Geophys. Res. 1993, 98, 10777.
(35) Poole, L. R.; Pitts, M. C. J. Geophys. Res. 1994, 99, 13083.
(36) Woodbridge, E. L.; Elkins, J. W.; Fahey, D. W.; Heidt, L. E.;
Solomon, S.; Baring, T. J.; Gilpin, T. M.; Pollock, W. H.; Schauffler, S.
M.; Atlas, E. L.; Loewenstein, M.; Podolske, J. R.; Webster, C. R.; May,
R. D.; Gilligan, J. M.; Montzka, S. A.; Boering, K. A.; Salawich, R. J. J.
Geophys. Res. 1995, 100, 3057.
References and Notes
(1) Anderson, J. G.; Toohey, D. W.; Brune, W. H. Science 1991, 251,
39.
(2) Solomon, S. Nature 1990, 347, 347.
(3) Crutzen, P. J.; Mu¨ller, R.; Bru¨hl, C.; Peter, T. Geophys. Res. Lett.
1992, 19, 1113.
(4) Helleis, F.; Crowley, J. N.; Moortgat, G. K. J. Phys. Chem. 1993,
97, 11464.
(5) Helleis, F.; Crowley, J. N.; Moortgat, G. K. Geophys. Res. Lett.
1994, 21, 1795.
(6) Kenner, R. D.; Ryan, K. R.; Plumb, I. C. Geophys. Res. Lett. 1993,
20, 1571.
(7) Kukui, A.; Jungkamp, T.; Schindler, R. N. Ber. Bunsen-Ges. Phys.
Chem. 1994, 98, 1298.
(8) Biggs, P.; Canosa-Mas, C. E.; Fracheboud, J. M.; Shallcross, D.
E.; Wayne, R. P. Geophys. Res. Lett. 1995, 22, 1221.
(9) Crowley, J. N.; Helleis, F.; Mu¨ller, R.; Moortgat, G. K.; Crutzen,
P. J.; Orlando, J. J. J. Geophys. Res. 1994, 99, 20683.
(10) Crowley, J. N.; Campuzano-Jost, P.; Moortgat, G. K. J. Phys. Chem.
1996, 100, 3601.
(37) Douglass, A. R.; Schoeberl, M. R.; Stolarski, R. S.; Waters, J. W.;
Russell, J. M., III; Roche, A. E.; Massie, S. T. J. Geophys. Res. 1995, 100,
13967.
JP9611075