Inorganic Chemistry
Communication
2007, 107, 2365−2387. (f) Cokoja, M.; Bruckmeier, C.; Rieger, B.;
showed that the hydride of 2 carried a positive charge of 0.37+
and that the apical Ru atom possessed a negative charge of 0.72−
(see the SI, Figure S5b). The space-filling model also revealed
that the hydride-capped Ru3 plane of 2 was less hindered and
therefore susceptible to the incoming CO2 (see the SI, Figure
S7). Because ROH cannot be deprotonated by cluster 2, it was
reasonable to postulate that the Ruapical−H bond of 2 might serve
as a kind of “Lewis pair” that would polarize the incoming CO2
molecule first5d,21 (see the SI, Figure S6b), and then the
electrophilic C of CO2 would be attacked by ROH, resulting in
the formation of a ROCOO− moiety accompanied by the
breakage of Ru−Ru bonds to release the Ru(CO)x fragments,
followed by the combination of resultant metal fragments to give
rise to clusters 5 and 6 (R = Me, 5; Et, 6). These results indicated
that the asymmetric cluster 2 plays a key role in the pronounced
affinity toward CO2, in contrast with 1, which has a lower
molecular polarizability.
Herrmann, W. A.; Kuhn, F. E. Angew. Chem., Int. Ed. 2011, 50, 8510−
̈
8537.
(4) Jacobsen, H.; Berke, H. Hydridicty of Transition Metal Hydrides
and its Implications for Reactivity. In Recent Advances in Hydride
Chemistry; Poli, R., Peruzzini, M., Eds.; Elsevier: Amsterdam, The
Netherlands, 2001; pp 101−106.
́
(5) (a) Jessop, P. G.; Joo, F.; Tai, C.-C. Coord. Chem. Rev. 2004, 248,
2425−2442. (b) Lau, C. P.; Ng, S. M.; Jia, G.; Lin, Z. Coord. Chem. Rev.
2007, 251, 2223−2237. (c) West, N. M.; Miller, A. J. M.; Labinger, J. A.;
Bercaw, J. E. Coord. Chem. Rev. 2011, 255, 881−898. (d) Appel, A. M.;
Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.;
Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld, C. A.; Morris, R.
H.; Peden, C. H. F.; Portis, A. R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek,
J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. Chem. Rev. 2013,
113, 6621−6658.
(6) Pearson, R. G. Chem. Rev. 1985, 85, 41−49.
(7) von Kutepow, N.; Himmele, W.; Hohenschutz, H. Chem. Ing.
Technol. 1965, 37, 383−388.
In summary, we successfully synthesized two protonic hydrido
Se−Ru−CO clusters, 1 and 2, which demonstrated remarkable
affinity toward CO and CO2 in alcohols to form novel
carboxylate- and alkylcarbonate-bridged di-HRu4Se2 clusters
that were controlled by a cooperative effect of the protonic
hydride, the electron-rich Ru, and the electronegative Se atom as
well as the symmetry of the clusters. The facile CO and CO2
activation shown here suggests that clusters 1 and 2 may be
potentially used as precursors for the catalysis of carbonylation
and carboxylation of alcohols. The related studies are currently in
progress.
(8) (a) Pandey, K. K. Coord. Chem. Rev. 1995, 140, 37−114 and
references cited therein. (b) Yin, X.; Moss, J. R. Coord. Chem. Rev. 1999,
181, 27−59 and references cited therein. (c) Darensbourg, D. J. Inorg.
Chem. 2010, 49, 10765−10780 and references cited therein.
(9) Ishida, T.; Hayasbi, T.; Mizobe, Y.; Hidai, M. Inorg. Chem. 1992, 31,
4481−4485.
(10) (a) Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev. 2009, 38, 100−
́
108. (b) Capon, J.-F.; Gloaguen, F.; Petillon, F. Y.; Schollhammer, P.;
Talarmin, J. Coord. Chem. Rev. 2009, 253, 1476−1494.
(11) (a) The Chemistry of Metal Cluster Complexes; Shriver, D. F.,
Kaesz, H. D., Adams, R. D., Eds.; Wiley-VCH: New York, 1990. (b)
Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, P. R.,
Eds.; Wiley-VCH: Weinheim, Germany, 1999. (c) Whitmire, K. H. J.
Coord. Chem. 1988, 17, 95−203. (d) Shieh, M.; Miu, C.-Y.; Chu, Y.-Y.;
Lin, C.-N. Coord. Chem. Rev. 2012, 256, 637−694.
ASSOCIATED CONTENT
* Supporting Information
Experimental and computational details. This material is
■
S
(12) (a) Grothausmann, R.; Zehl, G.; Manke, I.; Fiechter, S.;
Bogdanoff, P.; Dorbandt, I.; Kupsch, A.; Lange, A.; Hentschel, M. P.;
Schumacher, G.; Banhart, J. J. Am. Chem. Soc. 2011, 133, 18161−18171
and references cited therein. (b) Shih, Z.-Y.; Yang, Z.; Lin, Z.-H.; Chang,
H.-T. Int. J. Hydrogen Energy 2011, 36, 7303−7309.
AUTHOR INFORMATION
Corresponding Author
■
(13) Chihara, T.; Yamazaki, H. J. Organomet. Chem. 1994, 473, 273−
284.
(14) (a) Crabtree, R. H. The Organometallic Chemistry of The Transition
Metals; Wiley: New York, 1988. (b) van Leeuwen, P. W. N. M.; Claver,
C. Metal Complexes as Catalysts for Addition of Carbon Monoxide. In
Comprehensive Coordination Chemistry II; McCleverty, J. A., Meyer, T. J.,
Eds.; Elsevier: Oxford, U.K., 2004; Vol. 9, pp 141−206. (c) Haynes, A.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the Ministry of Science and
Technology of Taiwan (Grant 101-2113-M-003-005-MY3 to
M.S.). We are also grateful to the National Center for High-
Performance Computing, which provided the Gaussian package
and computer time. Our gratitude also goes to the Academic
Paper Editing Clinic, NTNU.
Adv. Catal. 2010, 53, 1−45. (d) Thomas, C. M.; Suss-Fink, G. Coord.
̈
Chem. Rev. 2003, 243, 125−142.
(15) (a) Dekleva, T. W.; Forster, D. Adv. Catal. 1986, 34, 81−130.
(b) Fahey, D. R. J. Am. Chem. Soc. 1981, 103, 136−141. (c) Martin, J. T.;
Baird, M. C. Organometallics 1983, 2, 1073−1078.
(16) (a) Moore, D. R.; Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J.
Am. Chem. Soc. 2003, 125, 11911−11924. (b) Peter, A.; Vahrenkamp, H.
Z. Anorg. Allg. Chem. 2005, 631, 2347−2351.
REFERENCES
■
(17) (a) Shaikh, A.-A. G.; Sivaram, S. Chem. Rev. 1996, 96, 951−976.
(1) Activation of Small Molecules; Tolman, W. B., Ed.; Wiley-VCH:
Weinheim, Germany, 2006.
́
(b) Dibenedetto, A.; Aresta, M.; Giannoccaro, P.; Pastore, C.; Papai, I.;
Schubert, G. Eur. J. Inorg. Chem. 2006, 908−913.
(2) Carbon Dioxide as Chemical Feedstock; Aresta, M., Ed.; Wiley-VCH:
Weinheim, Germany, 2010.
(18) Darensbourg, D. J.; Pala, M.; Waller, J. Organometallics 1983, 3,
1285−1291.
(3) (a) Muetterties, E. L.; Stein, J. Chem. Rev. 1979, 79, 479−490.
(b) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. Rev. 1995, 95, 259−272.
(c) Leitner, W. Coord. Chem. Rev. 1996, 153, 257−284. (d) Arakawa, H.;
Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.;
Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen, K.; DuBois,
D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Goddard, W. A.; Goodman, D.
W.; Keller, J.; Kubas, G. J.; Kung, H. H.; Lyons, J. E.; Manzer, L. E.;
Marks, T. J.; Morokuma, K.; Nicholas, K. M.; Periana, R.; Que, L.;
Rostrup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.;
Somorjai, G. A.; Stair, P. C.; Stults, B. R.; Tumas, W. Chem. Rev. 2001,
101, 953−996. (e) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev.
(19) Orto, P.; Selby, H. D.; Ferris, D.; Maeyer, J. R.; Zheng, Z. Inorg.
Chem. 2007, 46, 4377−4379.
(20) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985,
83, 735−746.
(21) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46−76.
4286
dx.doi.org/10.1021/ic500821z | Inorg. Chem. 2014, 53, 4284−4286