18
Organometallics 2004, 23, 18-20
A New Aza fer r ocen op h a n e w ith a n
Azoben zen e-Con ta in in g Liga n d . Rem ote Con tr ol of
P h otoisom er iza tion of th e Azoben zen e Gr ou p by Red ox
of th e Ir on Cen ter
Masaki Horie, Tatsuaki Sakano, Kohtaro Osakada,* and Hidenobu Nakao
Chemical Resources Laboratory, Tokyo Institute of Technology,
4259 Nagatsuta, Midori-ku, Yokohama 226-8503, J apan
Received September 9, 2003
Sch em e 1. Syn th esis of tr a n s-1a
Summary: Azobenzene-introduced azaferrocenophanes
have been newly synthesized by coupling reactions
catalyzed by transition-metal complexes. The photo-
chemical response of the azobenzene group is controlled
by the oxidation state of the molecule.
Organotransition-metal complexes that have azo-
benzene-containing ligands are of recent interest be-
cause they can exhibit photochemical properties which
are not achieved by azobenzene and its organic deriva-
tives.1 Connecting the metal center and azobenzene with
an organic linker having suitable length and/or a
π-conjugated system enables communication of the
electronic states between the metal and the azobenzene
group. Nishihara reported the unique properties of
m-ferrocenylazobenzene, in which azobenzene is directly
bonded to a Cp ligand of ferrocene.2 One-electron
oxidation of the compound decreased the thermody-
namic stability of the cis-azobenzene group bonded to
ferrocene. This oxidation led to the formation of a trans-
rich mixture in the Fe(III) state under irradiation with
a single green light and its conversion to a cis-rich
mixture upon electrochemical reduction to Fe(II). This
control of photoinduced cis-trans isomerization of the
azobenzene by changing the electronic state of the metal
center formed a smart on-off switching system.3 Alter-
natively, the introduction of a functional group to the
organic azobenzene can accelerate or retard the cis-
trans isomerization, depending on the kind of group.4
Thus,the electronic character of the substituent bonded
to azobenzene changes the photochemical properties.
a
Conditions: (a) 3-bromoaniline, RuCl2(PPh3)3 (5 mol %),
180 °C, NMP; (b) (4-phenylamino)azobenzene, Pd2(dba)3 (dba
) dibenzylidenacetone, 1.3 mol %), NaO-t-Bu (1.5 equiv), P(t-
Bu)3 (7.5 mol %), 100 °C, toluene.
We recently found that azaferrocenophanes undergo
reversible electron transfer between the Fe and N atoms
in the electrochemically oxidized state.5 Electronic com-
munication between the azaferrocenophane, showing
reversible redox behavior, and the substituent bonded
to azobenzene would provide a new approach for the
control of photochemical output of the molecule by
electrochemical stimuli. In this paper, we report the
preparation of a new azaferrocenophane containing an
azobenzene group and its electrochemical control over
the photochemical response via intramolecular electron
transfer.
Scheme 1 summarizes the preparation of the aza-
ferrocenophane trans-1, which contains an azobenzene
group, via coupling reactions catalyzed by Ru6 and Pd
complexes.7,8 The N atom, bonded to a phenyl carbon of
* To whom correspondence should be addressed. E-mail: kosakada@
res.titech.ac.jp.
(1) (a) Coe, B. J .; J ones, C. J .; McCleverty, J . A.; Bloor, D.; Kolinsky,
P. V.; J ones, R. J . J . Chem. Soc., Chem. Commun. 1989, 1485. (b) Lee,
S.-M.; Marcaccio, M.; McCleverty, J . A.; Ward, M. D. Chem. Mater.
1998, 10, 3272. (c) Barlow, S.; Bunting, H. E.; Ringham, C.; Green, J .
C.; Bublitz, G. U.; Boxer, S. G.; Perry, J . W.; Marder, S. R. J . Am.
Chem. Soc. 1999, 121, 3715. (d) Walter, D. G.; Compbell, D. J .; Mirkin,
C. A. J . Phys. Chem. B 1999, 103, 402. (e) Miyaki, Y.; Onishi, T.;
Kurosawa, H. Chem. Lett. 2000, 1334. (f) Murata, M.; Yamada, M.;
Fujita, T.; Kojima, K.; Kurihara, M.; Kubo, K.; Kobayashi, Y.; Nishi-
hara, H. J . Am. Chem. Soc. 2001, 123, 12903. (g) Muraoka, T.; Kinbara,
K.; Kobayashi, Y.; Aida, T. J . Am. Chem. Soc. 2003, 125, 5612.
(2) Kurihara, M.; Hirooka, A.; Kume, S.; Sugimoto, M.; Nishihara,
H. J . Am. Chem. Soc. 2002, 124, 8800.
(4) (a) Tsutsumi, O.; Kitsunai, T.; Kanazawa, A.; Shiono, T.; Ikeda,
T. Macromolecules 1998, 31, 355. (b) Nishimura, N.; Sueyoshi, T.;
Yamanaka, H.; Imai, E.; Yamamoto, S.; Hasegawa, S. Bull. Chem. Soc.
J pn. 1976, 49, 1381. (c) Nishimura, N.; Kosako, S.; Sueishi, Y. Bull.
Chem. Soc. J pn. 1984, 57, 1617. See also: (d) Nihei, M.; Kurihara,
M.; Mizutani, J .; Nishihara, H. J Am. Chem. Soc. 2003, 125, 2964.
(5) (a) Yamaguchi, I.; Sakano, T.; Ishii, H.; Osakada, K.; Yamamoto,
T. J . Organomet. Chem. 1999, 584, 213. (b) Sakano, T.; Horie, M.;
Osakada, K.; Nakao, H. Bull. Chem. Soc. J pn. 2001, 74, 2059.
(6) (a) Murahashi, S.-I.; Kondo, K.; Hakata, T. Tetrahedron Lett.
1982, 23, 229. (b) Tsuji, Y.; Huh, K. T.; Ohsugi, Y.; Watanabe, Y. J .
Org. Chem. 1985, 50, 1365. (c) Tsuji, Y.; Huh, K. T.; Yokoyama, Y.;
Watanabe, Y. J . Chem. Soc., Chem. Commun. 1986, 1575.
(3) Other examples of a dual-response system: (a) de Silva, A. P.;
McClenagham, N. D. J . Am. Chem. Soc. 2000, 122, 3965. (b) Lukas,
A. S.; Bushard, P. J .; Wasielewski, M. R. J . Am. Chem. Soc. 2001, 123,
2440. (c) Alvarez, J .; Ren, T.; Kaifer, A. E. Organometallics 2001, 20,
3543.
(7) (a) Hartwig, J . F.; Richards, S.; Baran˜ano, D.; Paul, F. J . Am.
Chem. Soc. 1996, 118, 3626. (b) Hartwig, J . F. Synlett 1997, 329. (c)
Driver, M. S.; Hartwig, J . F. J . Am. Chem. Soc. 1997, 119, 8232. (d)
Alcazar-Roman, L. M.; Hartwig, J . F.; Rheingold, A. L.; Liable-Sands,
L. M.; Guzei, I. A. J . Am. Chem. Soc. 2000, 122, 4618.
10.1021/om034163i CCC: $27.50 © 2004 American Chemical Society
Publication on Web 12/09/2003