www.eurjic.org
FULL PAPER
Chem. Asian J. 2012, 7, 2796–2804; c) L. Ma, W. Lin, Top.
Curr. Chem. 2010, 293, 175–205; d) M. Ranocchiari, J. A.
van Bokhoven, Phys. Chem. Chem. Phys. 2011, 13, 6388–6396;
e) D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. 2009, 121,
Table 2. Crystal and structure refinement details for 1–3.
Compound
1
2
3
Formula
Formula weight
T (K)
Crystal system
Space group
a (Å)
b (Å)
c (Å)
α (°)
C
12
H
11
O
6
N
2
ScC20
H
18
O
24
N
9
Sc
3
C
506
293(2)
8 12 14 6 2
H O N Sc
7
638–7649; f) D. Farrusseng, S. Aguado, C. Pinel, Angew.
Chem. Int. Ed. 2009, 48, 7502–7513; Angew. Chem. 2009, 121,
638; g) Y. Huang, Z. Zheng, T. Liu, J. Lü, Z. Lin, H. Li, R.
324
293(2)
monoclinic
P2 /C
7.4582(15)
18.454(4)
10.380(2)
90
903
293(2)
orthorhombic orthorhombic
7
Cao, Catal. Commun. 2011, 14, 27–31; h) Y. Huang, S. Liu, Z.
Lin, W. Li, X. Li, R. Cao, J. Catal. 2012, 292, 111–117; i) Y.
Huang, Z. Lin, R. Cao, Chem. Eur. J. 2011, 17, 12706–12712;
j) J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. B. T.
Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450–1459; k)
Y. Huang, T. Liu, J. Lin, J. Lü, Z. Lin, R. Cao, Inorg. Chem.
1
Fddd
Pbca
31.8861(12)
20.2788(6)
10.5793(3)
90
14.121(3)
6.7919(14)
17.397(3)
90
β (°)
92.01(3)
90
6840.7(4)
4
1.494
652.0
0.543
0.0648
1.071
0.0469,
0.1341
0.0689,
0.1465
90
90
6840.7(4)
8
1.567
3256.0
0.669
0.0472
1.092
0.0953,
0.2189
0.0988,
0.2202
90
90
1668.5(6)
4
1.975
976
0.908
0.0979
1.039
0.0481,
0.1238
0.0700,
0.1351
2011, 50, 2191–2198; l) A. Dhakshinamoorthy, H. Garcia,
γ (°) 3
Chem. Soc. Rev. 2012, 41, 5262–5284; m) K. Kim, M. Banerjee,
M. Yoon, S. Das, Top. Curr. Chem. 2010, 293, 115–153; n) M.
Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 1196–
V (Å )
Z
D
(g/cm3)
c
1231.
F(000)–
1
[4] a) S. Nagayama, S. Kobayashi, Angew. Chem. Int. Ed. 2000,
μ (mm )
3
9, 567–569; Angew. Chem. 2000, 112, 578; b) B. Karimi, L.
R
int
Ma’Mani, Org. Lett. 2004, 6, 4813–4815.
GOF
, wR
IϾ2σ(I)]
, wR
[
5] F. Gándara, B. Gómez-Lor, M. Iglesias, N. Snejko, E. Gutiér-
R
1
2
[
a,b]
rez-Puebla, A. Monge, Chem. Commun. 2009, 2393–2395.
[6] J. Perles, M. Iglesias, C. Ruiz-Valero, N. Snejko, Chem. Com-
mun. 2003, 346–347.
[
R
1
2
[
a,b]
(all data)
[
7] a) S. Kobayashi, M. Sugiura, H. Kitagawa, W. W. L. Lam,
Chem. Rev. 2002, 102, 2227–2302; b) B. Karimi, L. Ma’mani,
Tetrahedron Lett. 2003, 44, 6051–6053.
[
a] R = Σ|F
1
o
| – |F
c
|/Σ|F
o
|. [b] wR
2
= Σ[w(F 2
o
– F
c
2)2]/Σ[w(F
o
2)2]1/2.
[
8] a) J. Perles, M. Iglesias, C. Ruiz-Valero, N. Snejko, Chem. Com-
mun. 2003, 346–347; b) J. Perles, M. Iglesias, M. A. Martin-
Luengo, M. A. Monge, C. Ruiz-Valero, N. Snejko, Chem. Ma-
ter. 2005, 17, 5837–5842; c) P. D. C. Dietzel, R. Blom, H.
Fjellvag, Dalton Trans. 2006, 2055–2057.
Catalytic Experiment: The catalysts were soaked in MeOH for 24 h,
and then heated under vacuum at 85 °C for 16 h. A typical cyano-
silylation procedure was performed as follows: activated catalyst
(
0.1 mmol) was suspended in dry acetonitrile (5 mL) followed by
the addition of the aldehyde (0.5 mmol) and trimethylsilyl cyanide
1.2 mmol). The reaction mixtures were stirred at room tempera-
[
9] a) L. F. Tietze, U. Beifuss, Comprehensive Organic Synthesis
Pergamon, New York, 1991, p. 341; b) H. Pines, M. Stalick,
Base-Catalyzed Reactions of Hydrocarbons and Related Com-
pounds, Academic Press, New York 1977, p. 234.
(
1
ture. The yields of the reactions were determined by H NMR spec-
troscopy and were calculated on the basis of the carbonyl substrate.
Catalytic recyclability was checked for three times with the same
batch of catalyst, and no obvious decrease in activity was observed.
The observed yields in three consecutive runs were 100%, 98%,
and 99% for 1, 100%, 97%, and 98% for 2, and 100%, 96%, and
[10] a) R. J. H. Gregory, Chem. Rev. 1999, 99, 3649; b) M. North,
Tetrahedron: Asymmetry 2003, 14, 147–176.
[
11] a) O. Ohmori, M. Fujita, Chem. Commun. 2004, 1586–1587; b)
S. Horike, M. Dinc a˘ , K. Tamaki, J. R. Long, J. Am. Chem.
Soc. 2008, 130, 5854–5855; c) S. Hasegawa, S. Horike, R. Mat-
suda, S. Furukawa, K. Mochizuki, Y. Kinoshita, S. Kitagawa,
J. Am. Chem. Soc. 2007, 129, 2607–2614; d) D. Y. Hong, K. H.
Young, C. Serre, G. Frey, J. S. Chang, Adv. Funct. Mater. 2009,
19, 1537–1552.
97% for 3.
Acknowledgments
[
12] a) I. A. Ibarra, S. H. Yang, X. Lin, A. J. Blake, P. J. Rizkallah,
H. Nowell, D. R. Allan, N. R. Champness, P. Hubbersteya, M.
Schröder, Chem. Commun. 2011, 47, 8304–8306; b) I. A. Ibarra,
X. Lin, S. H. Yang, A. J. Blake, G. S. Walker, S. A. Barnett,
D. R. Allan, N. R. Champness, P. Hubberstey, M. Schröder,
Chem. Eur. J. 2010, 16, 13671–13679; c) J. Perles, N. Snejko,
M. Iglesias, M. A. Monge, J. Mater. Chem. 2009, 19, 6504–
6511; d) S. R. Miller, P. A. Wright, T. Devic, C. Serre, G. Férey,
P. L. Llewellyn, R. Denoyel, L. Gaberova, Y. Filinchuk, Lang-
muir 2009, 25, 3618–3626; e) S. A. Cotton, V. M. A. Fisher,
P. R. Raithby, S. Schiffers, S. J. Teat, Inorg. Chem. Commun.
2008, 11, 822–824; f) S. R. Miller, P. A. Wright, C. Serre, T.
Loiseau, J. Marrotb, G. Férey, Chem. Commun. 2005, 3850–
3852; g) M. A. Katkova, V. A. Ilichev, G. K. Fukin, M. N.
Bochkarev, Inorg. Chim. Acta 2009, 362, 1393–1395.
We gratefully acknowledge the financial support of the National
Natural Science Foundation of China (Nos. 21171065, 21201077).
[
[
1] P. M. Forster, A. K. Cheetham, Top. Catal. 2003, 24, 79–86.
2] a) R. K. Das, A. Aijaz, M. K. Sharma, P. Lama, P. K. Bharad-
waj, Chem. Eur. J. 2012, 18, 6866–6872; b) A. Corma, H. Gar-
cia, F. X. L. Xamena, Chem. Rev. 2010, 110, 4606–4655; c)
A. M. Shultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, J. Am.
Chem. Soc. 2009, 131, 4204–4205; d) J. S. Seo, D. Whang, H.
Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982–
986; e) C. D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc.
2005, 127, 8940–8941; f) T. Uemura, R. Kitaura, Y. Ohta, M.
Nagaoka, S. Kitagawa, Angew. Chem. 2006, 118, 4218–4222; g)
T. Uemura, R. Kitaura, Y. Ohta, M. Nagaoka, S. Kitagawa,
Angew. Chem. Int. Ed. 2006, 45, 4112–4116; Angew. Chem.
[13] a) M. Fujita, Y. J. Kwon, S. Washizu, K. Ogura, J. Am. Chem.
Soc. 1994, 116, 1151–1152; b) A. Henschel, K. Gedrich, R.
Kraehnert, S. Kaskel, Chem. Commun. 2008, 4192–4194; c) P.
Phuengphai, S. Youngme, P. Gamez, J. Reedijk, Dalton Trans.
2010, 39, 7936–7942; d) T. Ladrak, S. Smulders, O. Roubeau,
S. J. Teat, P. Gamez, J. Reedijk, Eur. J. Inorg. Chem. 2010,
3804–3812; e) D. Dang, P. Wu, C. He, Z. Xie, C. Duan, J. Am.
Chem. Soc. 2010, 132, 14321–14323; f) S. Nayak, K. Harms, S.
Dehnen, Inorg. Chem. 2011, 50, 2714–2716.
2006, 118, 4218; h) L. Ma, J. M. Falkowski, C. Abney, W. Lin,
Nat. Chem. 2010, 2, 838–846; i) K. Gedrich, M. Heitbaum, A.
Notzon, I. Senkovska, R. Froehlich, J. Getzschmann, U.
Mueller, F. Glorius, S. Kaskel, Chem. Eur. J. 2011, 17, 2099–
2
103.
3] a) L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248–
256; b) X. M. Lin, T. T. Li, Y. W. Wang, L. Zhang, C. Y. Su,
[
1
Eur. J. Inorg. Chem. 2015, 931–938
937
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim