The Cu–MOR catalyst both activates methane and subsequently
strongly stabilizes the formed intermediate. We illustrate a
means to react this intermediate with water, which resulted in
methanol desorption. The inability to desorb the intermediate
Christian Koenig, David Stibal, Marco Servalli, Stephan
Rummelts, and Chen Lin is appreciated.
Notes and references
through heating in inert gas, instead yielding CO , means that
2
1
2
3
A. Holmen, Catal. Today, 2009, 142, 2–8.
R. H. Crabtree, Chem. Rev., 1995, 95, 987–1007.
R. A. Periana, D. J. Taube, E. R. Evitt, D. G. Loffler,
P. R. Wentrcek, G. Voss and T. Masuda, Science, 1993, 259,
the intermediate is strongly bound and can react with oxygen
2
to form CO . We propose that the role of steam is either the
reaction of the intermediate to methanol or the displacement
of methanol by competitive adsorption. It has been previously
proposed that the solvent used during extraction not only
simply dissolves the product formed on Cu–ZSM-5 but also
provides protons to the reaction intermediate, most likely a
340–343.
R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh and
H. Fujii, Science, 1998, 280, 560–564.
4
5 R. Balasubramanian, S. M. Smith, S. Rawat, L. A. Yatsunyk,
T. L. Stemmler and A. C. Rosenzweig, Nature, 2010, 465, 115–119.
6 K. A. Dubkov, V. I. Sobolev and G. I. Panov, Kinet. Catal., 1998,
1
6
methoxy species on the catalyst surface. Polar and protic
solvents such as ethanol and water/acetonitrile yielded higher
amounts of methanol than hexane and acetonitrile during
extraction at room temperature. On Fe–ZSM-5, extraction
with dry solvents such as acetonitrile and tetrahydrofuran
yielded virtually no methanol while the addition of increasing
amounts of water until 10 vol% correspondingly increased the
3
9, 72–79.
7
8
9
E. V. Starokon, M. V. Parfenov, L. V. Pirutko, S. I. Abornev and
G. I. Panov, J. Phys. Chem. C, 2011, 115, 2155–2161.
J. R. Anderson and P. Tsai, J. Chem. Soc., Chem. Commun., 1987,
1435–1436.
E. V. Starokon, K. A. Dubkov, L. V. Pirutko and G. I. Panov,
Top. Catal., 2003, 23, 137–143.
10 M. H. Groothaert, P. J. Smeets, B. F. Sels, P. A. Jacobs and
7
R. A. Schoonheydt, J. Am. Chem. Soc., 2005, 127, 1394–1395.
1 P. J. Smeets, M. H. Groothaert and R. A. Schoonheydt,
Catal. Today, 2005, 110, 303–309.
yield of extracted methanol. Methanol was proposed to form
7
1
,18
due to the hydrolysis of methoxy groups.
DFT calculations
showed that this hydrolysis is relatively facile from an energy
1
12 M. H. Groothaert, K. Lievens, J. A. van Bokhoven, A. A. Battiston,
B. M. Weckhuysen, K. Pierloot and R. A. Schoonheydt,
ChemPhysChem, 2003, 4, 626–630.
9
perspective. Another possibility is that the product is already
present as surface-adsorbed methanol held by hydrogen bonds
1
3 M. H. Groothaert, J. A. van Bokhoven, A. A. Battiston,
B. M. Weckhuysen and R. A. Schoonheydt, J. Am. Chem. Soc.,
2003, 125, 7629–7640.
2
0
to Cu or to the zeolite lattice oxygens wherein the introduction of
2
1
water distorts the H-bonds, and may facilitate desorption. Either
way, we demonstrated a practical feasibility of water-assisted
desorption of methanol on-stream that could close a reaction
cycle. After methanol desorption, successive steps of switching to
dry inert gas and heating in oxygen to 450 1C apparently removed
excess water and provided for active oxygenated sites, respectively,
for the next cycle of methane to methanol conversion. Thermal
treatment has been reported to induce dehydration and auto-
1
4 J. S. Woertink, P. J. Smeets, M. H. Groothaert, M. A. Vance,
B. F. Sels, R. A. Schoonheydt and E. I. Solomon, Proc. Natl. Acad.
Sci. U. S. A., 2009, 106, 18908–18913.
15 P. J. Smeets, R. G. Hadt, J. S. Woertink, P. Vanelderen,
R. A. Schoonheydt, B. F. Sels and E. I. Solomon, J. Am. Chem.
Soc., 2010, 132, 14736–14738.
1
6 N. V. Beznis, B. M. Weckhuysen and J. H. Bitter, Catal. Lett.,
010, 138, 14–22.
2
17 L. S. Kau, D. J. Spirasolomon, J. E. Pennerhahn, K. O. Hodgson
and E. I. Solomon, J. Am. Chem. Soc., 1987, 109, 6433–6442.
18 B. R. Wood, J. A. Reimer, A. T. Bell, M. T. Janicke and K. C. Ott,
J. Catal., 2004, 225, 300–306.
2
2
reduction of Cu sites, a requisite for activating molecular
1
5
O
2
.
The cycling experiment (S6, ESIw) showed the capability
of regenerating Cu–MOR for converting methane to methanol
1
2
2
9 W. Z. Liang, A. T. Bell, M. Head-Gordon and A. K. Chakraborty,
J. Phys. Chem. B, 2004, 108, 4362–4368.
0 A. E. Baber, T. J. Lawton and E. C. H. Sykes, J. Phys. Chem. C,
in a cyclic batch-wise operation.
In summary, we have shown a multi-step process to produce
methanol from methane on a preoxidized Cu–MOR catalyst
via activation and subsequent hydration. This opens the
possibility of operating the system in a catalytic cycle.
The authors thank Dr Frank Krumeich for the TEM
measurements, Silvia Koechli for ICP, Peter Fleckenstein for
the trapping and quantification work. Beamtime support of
2
011, 115, 9157–9163.
1 M. Elanany, K. Sasata, P. Selvam, M. Koyama, M. Kubo and
A. Miyamoto, in Recent Advances in the Science and Technology of
Zeolites and Related Materials, Pts A–C, Studies in Surface Science
and Catalysis, ed. E. VanSteen, M. Claeys and L. H. Callanan,
Elsevier Science B.V., Amsterdam, 2004, vol. 154, pp. 2143–2150.
2 M. LoJacono, G. Fierro, R. Dragone, X. B. Feng, J. dItri and
W. K. Hall, J. Phys. Chem. B, 1997, 101, 1979–1984.
2
4
06 Chem. Commun., 2012, 48, 404–406
This journal is c The Royal Society of Chemistry 2012