RSC Advances
Paper
Table 2 Surface Cu component of reduced catalysts based on Cu
LMM deconvolution
8 F. Arena, G. Italiano, K. Barbera, S. Bordiga, G. Bonura and
L. Spadaro, Appl. Catal., A, 2008, 350, 16–23.
a
b
ꢀ1
9 J. Toyir, P. R. Piscina, J. Llorca, J. R. Fierro and N. Homs,
Phys. Chem. Chem. Phys., 2001, 3, 4837–4845.
K. E. /eV
A. P. /eV
B. E. of Cu
2p3/2/eV
+
0
+
0
cu+c/% 10 C. Baltes, S. Vukojevic and F. Schuth, J. Catal., 2008, 258,
Catalyst
Cu
Cu
Cu
Cu
X
3
34–345.
Cat
Cat
Cat
Cat
0
2
4
6
916.3
916.4
916.3
916.4
918.4
918.4
918.4
918.3
1890.0
1848.9
1890.0
1848.9
1851.1
1851.0
1851.1
1851.1
932.7
932.7
932.7
932.7
25.4
36.2
27.5
26.3
1
1 W. Q. Xia, H. D. Tang, S. D. Lin, Y. Q. Cen and H. Z. Liu, Chin.
J. Catal., 2009, 30, 879–883.
12 L. M. Plyasova, T. M. Yur'eva, T. A. Kriger, O. V. Makarova,
a
b
c
+
+
V. A. Zaikovskii, L. P. Soloveva, et al., Kinet. Catal., 1995,
Kinetic energy. Auger parameter. Intensity ratio of Cu to (Cu
+
0
36, 425–443.
Cu ) by deconvolution of Cu LMM XAES spectra.
13 M. Y. Tamara, M. P. Lyudmila, I. Z. Vladimir, P. M. Tatyana,
B. Alfred and C. Johannes, Phys. Chem. Chem. Phys., 2004, 6,
4522–4534.
methanol synthesis is related linearly to the copper surface area; 14 J. C. J. Bart and R. P. A. Sneeden, Catal. Today, 1987, 2,
3
3
and the metallic copper is the active species. The others
1–14.
+
insisted that the amount of Cu determined the methanol 15 F. Wang, Y. Liu, Y. Gan, W. Ding, W. Fang and Y. Yang, Fuel
In addition, it was claimed by Jones' group
that both Cu and Cu species are essential for methanol 16 L. Wang, L. Yang, Y. Zhang, W. Ding, S. Chen, W. Fang and
formation and the ratio of Cu /Cu determines the specic
activity. We propose that Cu /Cu ratio is crucial for catalytic 17 C. Yang and Z. Y. Ma, Catal. Today, 2006, 116, 222–
34,35
synthesis activity.
Process. Technol., 2013, 110, 190–221.
+
0
+
0
Y. Yang, Fuel Process. Technol., 2010, 91, 723–734.
36
+
0
performance of methanol synthesis. Perhaps, suitable amount
227.
(
2 wt%) of binary Cu–Zn precursor (Cu–Zn ¼ 3) play an 18 R. X. Zhou, T. M. Yu and X. Y. Zheng, Appl. Surf. Sci., 1999,
+ 0
important role in optimizing the ratio of Cu /Cu on the Cu
surface, therein the Cu /Cu ratio is closely correlated with the 19 M. M. G u¨ nter, T. Ressler, R. E. Jento and B. Bems, J. Catal.,
148, 263–272.
+
0
enhancement of the methanol yield.
2001, 203, 133–146.
2
2
0 O. Yasuakl, F. Klyotaka, I. Toshinobu and T. Shllchiro, Phys.
Chem., 1983, 87, 3740–3752.
1 K. Patrick, K. Igor, G. Frank, T. Annette, S. Robert and
R. Thorsten, Appl. Catal., A, 2008, 348, 153–162.
4
. Conclusion
A series of modied ternary Cu–Zn–Al catalysts with binary Cu–
Zn precursor for methanol synthesis from synthesis gas were 22 M. S. Vong, P. A. Sermon and K. Grant, Catal. Lett., 1990, 4,
prepared. The test results show that the modied ternary Cu–
15–27.
Zn–Al catalysts with binary Cu–Zn precursor exhibit higher 23 W. Robinson and J. C. Mol, Appl. Catal., 1990, 60, 61–77.
space time yields (Y and Y ) than unmodied Cu–Zn–Al catalyst. 24 R. G. Herman, K. Klier, G. W. Simmons, B. P. Finn and
The ternary Cu–Zn–Al catalyst (Cat ) modied with 2% Cu–Zn
J. B. Bulko, J. Catal., 1979, 56, 407–416.
precursor (Cu–Zn ¼ 3 : 1) exhibits the best catalytic perfor- 25 W. L. Dai, Q. Sun, J. F. Deng, D. Wu and Y. H. Sun, Appl. Surf.
mance for the reaction. The characterization results indicate
Sci., 2001, 177, 172–186.
that the addition of binary Cu–Zn precursor optimized the ratio 26 R. T. Figueiredo, A. Mart ´ı nez-Arias, M. L. Granados and
i
y
2
0
+
of Cu to Cu in the modied ternary Cu–Zn–Al catalyst,
J. L. G. Fierro, J. Catal., 1998, 178, 146–167.
increased the amount of Cu species on the surface, which is 27 G. C. Chinchen and K. C. Waugh, J. Catal., 1986, 97, 280–297.
+
believed to be very important active sites for the reaction.
28 G. R. Sheffer and T. S. King, J. Catal., 1989, 115, 376–397.
2
9 Z. Zhang, C. Zhang, J. Sun, T. Kou and C. Zhao, RSC Adv.,
012, 2, 11820–11828.
2
References
3
0 R. G. Herman, K. Klier, G. W. Simmons, B. P. Finn and
J. B. Bulko, J. Catal., 1979, 56, 407–429.
1 R. Zhang, J. Li and B. Wang, RSC Adv., 2013, 3, 12287–12298.
2 T. Fujitani, I. Nakamura, T. Watanabe, T. Uchijima and
J. Nakamura, Catal. Lett., 1995, 35, 297–312.
3 G. C. Chinchen and K. C. Waugh, J. Catal., 1986, 97, 280–287.
4 M. Saito, T. Fujitani, M. Takeuchi and T. Watanabe, Appl.
Catal., A, 1996, 138, 311–318.
1
2
3
4
P. Zhang, M. Fan and P. P. Jiang, RSC Adv., 2012, 2, 4593–
595.
Y. Zhou, S. Wang, M. Xiao, D. Han, Y. Lu and Y. Meng, RSC
Adv., 2012, 2, 6831–6837.
4
3
3
A. George, G. Alain and P. Surya, Angew. Chem., Int. Ed., 2005,
3
3
4
4, 2636–2641.
Y. Q. Cen, X. N. Li and H. Z. Liu, Chin. J. Catal., 2006, 27, 210–
22.
2
3
5 T. Fujitani and J. Nakamura, Appl. Catal., A, 2000, 191, 111–
5
6
7
J. P. Breen and J. R. H. Ross, Catal. Today, 1999, 51, 533–543.
F. Arena and K. Barbera, J. Catal., 2007, 249, 194–210.
P. Kurr, I. Kasatkin, F. Girgsdies, A. Trunschke, R. Schl ¨o gl
and T. Ressler, Appl. Catal., A, 2008, 348, 154–164.
1
29.
6 S. D. Jones, L. M. Neal and E. Helena, Appl. Catal., B, 2008,
4, 631–642.
3
8
30682 | RSC Adv., 2014, 4, 30677–30682
This journal is © The Royal Society of Chemistry 2014