C O M M U N I C A T I O N S
for their generous support; MIT NMR facilities are supported in
part by NSF Awards CHE-9808061 and DBI-9729592.
Supporting Information Available: Experimental details and
characterization data for new compounds; comparison of different
precatalysts. Crystallographic data for 2b are provided as a CIF. This
References
(1) (a) Ja¨ckel, C.; Koksch, B. Eur. J. Org. Chem. 2005, 4483-4503. (b)
Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214-231.
(2) (a) Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006,
128, 7134-7135. (b) Prakash, G. K. S.; Beier, P. Angew. Chem., Int. Ed.
2006, 45, 2172-2174 and references cited therein. (c) Hintermann, L.;
Togni, A. Angew. Chem., Int. Ed. 2000, 39, 4359-4362. (d) Yandulov,
D. V.; Tran, N. T. J. Am. Chem. Soc. 2007, 129, 1342-1358. (e) Fraser,
S. L.; Antipin, M. Y.; Khroustalyov, V. N.; Grushin, V. V. J. Am. Chem.
Soc. 1997, 119, 4769-4770. (f) Barthazy, P.; Togni, A.; Mezzetti, A.
Organometallics 2001, 20, 3472-3477. (g) Grushin, V. V. Angew. Chem.,
Int. Ed. 1998, 37, 994-996.
Figure 1. X-ray crystal structure of addition product 2b, shown as 50%
ellipsoids. Hydrogens and solvent CH2Cl2 are omitted for clarity. Selected
bond lengths (Å) and angles (deg): Au(1)-C(1) ) 2.014(3), Au(1)-C(31)
) 2.043(3), C(31)-C(38) ) 1.329(9), C(38)-F(1) ) 1.400(10), C(1)-
Au(1)-C(31) ) 176.36(10), C(38)-C(31)-Au(1) ) 119.2(8), C(32)-
C(31)-Au(1) ) 117.7(6), C(32)-C(31)-C(38) ) 123.1(10).
(3) For reviews, see: (a) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem.,
Int. Ed. 2006, 45, 7896-7936. (b) Jime´nez-Nu´n˜ez, E.; Echavarren, A.
M. Chem. Commun. 2007, 333-346.
Table 1. Substrate Scopea
(4) Selected references: (a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc.
2007, 129, 4160-4161. (b) Dube´, P.; Toste, F. D. J. Am. Chem. Soc.
2006, 128, 12062-12063. (c) Marion, N.; D´ıez-Gonza´lez, S.; de Fre´mont,
P.; Nobel, A. R.; Nolan, S. P. Angew. Chem., Int. Ed. 2006, 45, 3647-
3650. (d) Hashmi, A. S. K.; Blanco, M. C. Eur. J. Org. Chem. 2006,
4340-4342. (e) Nevado, C.; Echavarren, A. M. Chem.sEur. J. 2005,
11, 3155-3164.
(5) See for example: (a) Zhang, Y.; Donahue, J. P.; Li, C.-J. Org. Lett. 2007,
9, 627-630. (b) Kadzimirsz, D.; Hildebrandt, D.; Merz, K.; Dyker, G.
Chem. Commun. 2006, 661-662. (c) Hashmi, A. S. K.; Rudolph, M.;
Schymura, S.; Visus, J.; Frey, W. Eur. J. Org. Chem. 2006, 4905-4909.
(d) Kang, J.-E.; Kim, H.-B.; Lee, J.-W.; Shin, S. Org. Lett. 2006, 8, 3537-
3540. (e) Widenhoefer, R. A.; Han, X. Eur. J. Org. Chem. 2006, 4555-
4563 and references therein. See also ref 4a.
(6) Selected references: (a) Liu, B.; De Brabander, J. K. Org. Lett. 2006, 8,
4907-4910. (b) Belting, V.; Krause, N. Org. Lett. 2006, 8, 4489-4492.
(c) Schneider, S. K.; Herrmann, W. A.; Herdtweck, E. Z. Anorg. Allg.
Chem. 2003, 629, 2363-2370. (d) Casado, R.; Contel, M.; Laguna, M.;
Romero, P.; Sanz, S. J. Am. Chem. Soc. 2003, 125, 11925-11935. (e)
Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int.
Ed. 2002, 41, 4563-4565. (f) Teles, J. H.; Brode, S.; Chabanas, M. Angew.
Chem., Int. Ed. 1998, 37, 1415-1418. See also refs 4a, 4b.
(7) Laitar, D. S.; Mu¨ller, P.; Gray, T. G.; Sadighi, J. P. Organometallics 2005,
24, 4503-4505.
(8) Fritsch, J. M.; Retka, N. D.; McNeill, K. Inorg. Chem. 2006, 45, 2288-
2295.
(9) Reaction of AgF with perfluoro-2-butyne gives trans-addition: (a) Jeffries,
P. M.; Wilson, S. R.; Girolami, G. S. J. Organomet. Chem. 1993, 449,
203-209. (b) Miller, W. T.; Snider, R. H.; Hummel, R. J. J. Am. Chem.
Soc. 1969, 91, 6532-6534.
a Conditions: Reactions were performed using 1.5 equiv of Et3N•3HF
and 1.0 equiv of KHSO4, at alkyne concentrations of 1.8 M. b Entries 1
and 2 are catalyzed by (ClIPr)AuCl/AgBF4. Entries 3-6 are catalyzed by
(SIPr)AuOt-Bu. c Isolated as a mixture of A + B; composition determined
(10) Alkyne extrusion from (â-fluorovinyl) complexes: (a) Runge, A.; Sander,
W. W. Tetrahedron Lett. 1990, 31, 5453-5456. (b) Martin, S.; Sauveˆtre,
R.; Normant, J.-F. Tetrahedron Lett. 1982, 23, 4329-4332.
(11) Huang, D.; Koren, P. R.; Folting, K.; Davidson, E. R.; Caulton, K. G. J.
Am. Chem. Soc. 2000, 122, 8916-8931.
1
by H NMR.
6-dodecyne was achieved using a less electron-rich analogue of
IPr, 4,5-dichloro-1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene
(ClIPr).
(12) For another isolable [(NHC)Au(L)]+ complex, see: de Fre´mont, P;
Stevens, E. D.; Fructos, M. R.; D´ıaz-Requejo, M. M.; Pe´rez, P. J.; Nolan,
S. P. Chem. Commun. 2006, 2045-2047.
(13) Alvernhe, G; Laurent, A.; Haufe, G. Synthesis 1987, 562-564.
(14) Boche, G.; Fa¨hrmann, U. Chem. Ber. 1981, 114, 4005-4009.
(15) (a) Olah, G. A.; Li, X.-Y.; Wang, Q.; Prakash, G. K. S. Synthesis 1993,
693-699. (b) Olah, G. A.; Welch, J. T.; Vankar, Y. D.; Nojima, M.;
Kerekes, I.; Olah, J. A. J. Org. Chem. 1979, 44, 3872-3881.
(16) Albert, P.; Cousseau, J. J. Chem. Soc., Chem. Commun. 1985, 961-962.
(17) trans-Hydrofluorination of alkynyliodonium salts by Et3N•3HF: Yoshida,
M.; Komata, A.; Hara, S. Tetrahedron 2006, 62, 8636-8645.
(18) Gorgues, A.; Ste´phan, D.; Cousseau, J. J. Chem. Soc., Chem. Commun.
1989, 1493-1494.
The substrate scope of this method includes dialkyl-, diaryl-, and
aryl/alkyl- or thienyl/alkyl-substituted alkynes (Table 1). For
substrates bearing both a phenyl and an alkyl substituent, the
predominance of â-fluorostyrene products is consistent with the
preferential formation of R-phenylvinyl complex 2b by addition
of fluoride and gold(I) across 1-phenyl-1-propyne. Catalytic regio-
selectivities are higher for an electron-poor aryl substituent than
for an electron-rich one; however, the electron-rich thienyl sub-
stituent (entry 6) also gave exclusive â-fluorination. No gem-
difluoroalkanes are detected, and trans-hydrofluorination is observed
in all cases.
In conclusion, the reaction of an alkyne with an (NHC)gold(I)
fluoride results in reversible carbon-fluorine bond formation.
Electrophilic (NHC)gold(I) complexes catalyze the trans-hydro-
fluorination of internal alkynes at room temperature, using a mild
HF source. This catalysis represents a new, selective, and potentially
versatile method for the synthesis of fluoroalkenes.
(19) (a) Hara, S. Stereoselective Synthesis of Monofluoroalkenes Using Cross
Coupling Reactions. In Fluorine Containing Synthons; Soloshonok, V.
A., Ed.; ACS Symposium Series 911; American Chemical Society:
Washington, DC, 2005; pp 120-139. (b) From fluorinated ylides: Burton,
D. J.; Yang, Z.-Y.; Qiu, W. Chem. ReV. 1996, 96, 1641-1675.
(20) Selected references: (a) Narumi, T.; Niida, A.; Tomita, K.; Oishi, S.;
Otaka, A.; Ohno, H.; Fujii, N. Chem. Commun. 2006, 4720-4722. (b)
Xu, J.; Burton, D. J. J. Fluorine Chem. 2007, 128, 71-77. (c) Andrei,
D.; Wnuk, S. F. J. Org. Chem. 2006, 71, 405-408. (d) Nakamura, Y.;
Okada, M.; Koura, M.; Tojo, M.; Saito, A.; Sato, A.; Taguchi, T. J.
Fluorine Chem. 2006, 127, 627-636. (e) Lee, S. H.; Schwartz, J. J. Am.
Chem. Soc. 1986, 108, 2445-2447.
(21) (a) Bartlett, P. A.; Otake, A. J. Org. Chem. 1995, 60, 3107-3111. (b)
Urban, J. J.; Tillman, B. G.; Cronin, W. A. J. Phys. Chem. A 2006, 110,
11120-11129 and references therein.
(22) Comparison of Et3N•2HF with Et3N•3HF: Giudicelli, M. B.; Picq, D.;
Veyron, B. Tetrahedron Lett. 1990, 31, 6527-6530.
Acknowledgment. We thank the NSF (Grant No. CHE-
0349204), Corning, Inc., and the MIT Department of Chemistry
JA0723784
9
J. AM. CHEM. SOC. VOL. 129, NO. 25, 2007 7737