European Journal of Organic Chemistry
10.1002/ejoc.201601069
COMMUNICATION
Bhattacharyya, D. Panda, S. Gupta, M. Banerjee, Med. Res. Rev.
2008, 28, 155-183
Conclusions
[3]
D. Zemer, A. Livneh, Y. L. Danon, M. Pras, E. Sohar, Arthritis
Rheum. 1991, 34, 973-977
We have described an efficient semi-synthetic approach
towards non-racemic pyrrolo-allocolchicines starting from
natural colchicine. As key steps we used a Curtius degradation
of an allo-colchicinic acid followed by a Larock annulation to
build-up the indole ring system. The developed synthetic
methodology may find future applications in the synthesis of
various pyrrolo-allocolchicines. The N-methylated compound 14
may serve as a leading structure for the development of
anticancer compounds, possessing significant cytotoxic activity
already in subnanomolar concentration.
[4]
[5]
[6]
E. Ben-Chetrit, M. Levy, Semin. Arthritis Rheum. 1991, 20, 241-246.
R. Manna, Curr. Drug Targets Inflamm. Allergy 2005, 4, 117-124.
K. Masuda, A. Nakajima, A. Urayama, K. Nakae, M. Kogure, G.
Inaba, Lancet 1989, 1, 1093-1096.
[7]
M. M. Kaplan, D. W. Alling, H. J. Zimmerman, H. J. Wolfe, R. A.
Sepersky, G. S. Hirsch, G. H. Elta, K. A. Glick, K. A. Eagen, N. Eng.
J. Med. 1986, 315, 1448-1454.
[8]
[9]
Y. Gong, C. Gluud, Am. J. Gastroenterol., 2005, 100, 1876-1885.
R. J. McKendry, G. Kraag, S. Seigel, A. Al-Awadhi, Ann. Rheum. Dis.
1993, 52, 826-828.
[10]
[11]
R. A. Kyle, M. A. Gertz, P. R. Greipp, T. E. Witzig, J. A. Lust, M. Q.
Lacy, T. M. Therneau, N. Eng. J. Med. 1997, 336, 1202-1207.
M. Imazio, A. Brucato, R. Cemin, S. Ferrua, R. Belli, S. Maestroni, R.
Trinchero, D. H. Spodick, Y. Adler, Ann. Intern. Med. 2011, 155, 409-
414.
Experimental Section
Synthesis of compound 14. Into a Schlenk flask with a stirring bar,
compound 13 (80 mg, 0,12 mmol), Pd(dppf)2Cl2 (0,05 eq., 4,4 mg, 0,006
mmol), and CuI (0,1 eq., 2,3 mg, 0,012 mmol) were placed. Acetonitrile
was added under inert atmosphere. DIPEA (3 eq., 95 mcl, 0,366 mmol)
and alkyne (1,2 eq., 30 mcl, 0,146 mmol) were added to the reaction
mixture, the temperature was risen to 90 °C, and the mixture stirred for 8
hours. The solvent was removed in vacuum and the residue was purified
using column chromatography on silica with petroleum ether-ethyl
acetate-ethanol (5:1:1) as eluent. The product 5f was obtained as pale-
beige oil in 51% yield. It was mixed with NaH (60% in mineral oil, 2,3 eq.,
0,19 mmol, 7,6 mg) and MeI (1,5 eq., 0,125 mmol, 17,7 mg) in THF at
0 °C, and the temperature was rised to 65 °C. The reaction was carried
out for 6 hours, the mixture filtered through a short pad of silica, and the
solvent was removed. The crude product was dissolved in 4 ml of THF,
45 mcl of 1N TBAF in THF was added, and the mixture was stirred for 3
hours. The product was purified by column on silica (petroleum ether –
ethyl acetate – ethanol 15:1:1). Compound 14 was obtained as a white
solid in 55% yield (over two steps). M.p. = 175-177 °С. 1H NMR (400
MHz, dmso-d6): δ 8.51 (d, J = 8.3 Hz, 1H, NHAc), 7.46 (s, 1H, C(8)-H),
7.37 (s, 1H, C(12)-H), 6.38 (s, 1H, C(11)-H), 5.22 (t, J = 5.0 Hz, 1H, OH),
4.64 (d, J = 5.1 Hz, 2H, CH2OH), 4.60 – 4.56 (m, 1H, C(7)-H), 3.91 (s,
3H, OMe), 3.86 (s, 3H, OMe), 3.77 (s, 3H, OMe), 3.34 (s, 3H, NMe), 3.04
– 2.99 (m, 1H, C(5)-H), 2.10 – 2.05 (m, 1H, C(5)-H), 2.02 – 1.97 (m, 1H,
C(6)-H), 1.93 (s, 3H, C(O)CH3), 1.84 – 1.79 (m, 1H, C(6)-H). 13C NMR
(101 MHz, dmso-d6): δ 168.5, 150.1, 149.1, 145.8, 140.7, 137.2, 133.8,
133.7, 130.2, 125.2, 124.3, 121.2, 112.5, 103.6, 100.1, 61.2, 60.7, 60.2,
55.5, 48.3, 37.0, 29.8, 29.7, 22.80. For the experimental details see
Supporting Information.
[12]
[13]
M. Imazio, F. Gaita, Future Cardiol.2016, 12, 9-16.
(a) J. Seligmann, C. Twelves, Future Med. Chem. 2013, 5, 339-352.
(b) C. D. Katsetos, P. r ber, Curr. Pharm. Des. 2012, 18, 2778-
2792.
[14]
[15]
O. Boyé, A. Brossi In The Alkaloids: Chemistry and Pharmacology
(Ed.: A. Brossi, G. A. Cordell), Academic Press: San Diego, CA,
1992; Vol. 41, p. 125.
(a) G. R. Pettit, S. B. Singh, E. Hamel, C. M. Lin, D. S. Alberts, D.
Garcia-Kendall, Experientia 1989, 45, 209-211. (b) G. C. Tron, T.
Pirali, G. Sorba, F. Pagliai, S. Busacca, A. Genazzani, J. Med. Chem.
2006, 49, 3033-3044 and references therein. (c) H. P. Hsieh, J. P.
Liou, N. Mahindroo, Curr. Pharm. Des. 2005, 11, 1655 and
references therein.
[16]
[17]
(a) O. G. Ganina, E. Daras, V. Bourgarel-Rey, V. Peyrot, A. N.
Andresuk, J.-P. Finet, A. Yu. Fedorov, I. P. Beletskaya, S. Combes,
Bioorg. Med. Chem. 2008, 16, 8806. (b) S. Combes, P. Barbier, S.
Douillard, A. McLeer-Florin, V. Bourgarel-Rey, J.-T. Pierson, A. Yu.
Fedorov, J.-P. Finet, J. Boutonnat, V. Peyrot, J. Med. Chem. 2011,
54, 3153.
(a) R.; Romagnoli, P. Giovanni Baraldi M. K. Salvador, F. Prencipe,
C. Lopez-Cara, S. S. Ortega, A. Brancale, E. Hamel, I. Castagliuolo,
S. Mitola, R. Ronca, R. Bortolozzi, E. orcu, G. Basso, G. Viola, J.
Med. Chem. 2015, 58, 3209. (b) Y. Lu, J. Chen, J. Wang, C.-M. Li,
S. Ahn, C. M. Barrett, J. T. Dalton, W. Li, D. D. Miller, J. Med. Chem.
2014, 57, 7355. (c) U. Galli, C. Travelli, S. Aprile, E. Arrigoni, S.
Torretta, G. Grosa, A. Massarotti, G. Sorba, P. L. Canonico, A. A.
Genazzani, G. C.Tron, J. Med. Chem. 2015, 58, 1345−1357.
(a) N. Sitnikov, J. Velder, L. Abodo, N. Cuvelier, J.-M. Neudorfl, A.
Prokop, G. Krause, A. Yu. Fedorov, H.-G. Schmalz, Chem. Eur. J.
2012, 18, 12096-12102. (b) N. S. Sitnikov, A. S. Kokisheva, G. K.
Fukin, J.-M. Neudörfl, H. Sutorius, A. Prokop, V. V. Fokin, H.-G.
Schmalz, A. Yu. Fedorov, Eur. J. Org. Chem. 2014, 29, 6481-6492.
(c) N. S. Sitnikov, A. V. Sintsov, D. Allegro, P. Barbier, S. Combes, O.
L. Abodo, A. Prokop, H.-G. Schmalz, A. Yu. Fedorov,
MedChemComm, 2015, 6, 2158.
[18]
Acknowledgements
This work was supported by the Russian Science Foundation
(Project 16-13-10248), E.S.S. thanks RFBR (Project 16-33-
00942) for the financial support during the work on the
preparation of compound 14
[19]
Yu. V. Voitovich, E. S. Shegravina, N. S. Sitnikov, V. Faerman, V. V.
Fokin, H.-G. Schmalz, S. Combes, D. Allegro, P. Barbier, I. P.
Beletskaya, E. V. Svirshchevskaya, A. Yu. Fedorov, J. Med. Chem.
2015, 58, 692-704.
Keywords: alkaloids • cross-coupling • antitubulin agents •
cytotoxicity • rearrangements
[20]
[21]
[22]
For a review on allocolchicines see: N. S. Sitnikov, A. Yu. Fedorov,
Russ. Chem. Rev. 2013, 82, 393-411.
[1]
(a) H.-G. Capraro, A. Brossi, Tropolonic Colchicum Alkaloids. In The
Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1984; Vol. 23,
p. 1. (b) T. Graening, H.-G. Schmalz, Angew. Chem., Int. Ed. 2004,
43, 3230-3256.
N. Yasobu, M. Kitajima, N. Kogure, Y. Shishido, T. Matsuzaki, M.
Nagaoka, H. Takayama, ACS Med. Chem. Lett. 2011, 2, 348-352.
(a) G. Zeni, R. Larock, Chem. Rev. 2004, 104, 2285-2309. (b) I.
Nakamura, Y. Yamamoto, Chem. Rev. 2004, 104, 2127-2198. (c) T.
Lessing, F. Sterzenbach, T. J. J. Müller, Synlett 2015, 26, 1217-1221.
[2]
(a) R. B. G. Ravelli, B. Gigant, P. A. Curmi, I. Jourdain, S. Lachkar, A.
Sobel, M. Knossow, Nature 2004, 428, 198-202. (b) B.
[23]
F.
Santavy,
Helv.
Chim.
Acta,
1948,
31,
821-826.
This article is protected by copyright. All rights reserved