Inorganic Chemistry
Communication
energy transfer than in the Eu complexes. The three dpa units in
REFERENCES
■
TbL1 would thus be detrimental to the Tb ion because the
3
(1) (a) de Bettencourt-Dias, A. Luminescence of lanthanide ions in
coordination compounds and nanomaterials; John Wiley & Sons Inc.:
Chichester, U.K., 2014. (b) Hanninen, P.; Harma, H.; Ala-Kleme, T.
Lanthanide luminescence: photophysical, analytical and biological aspects;
Springer: Berlin, 2011. (c) Andres, J.; Hersch, R. D.; Moser, J. E.;
Chauvin, A. S. Adv. Funct. Mater. 2014, 24, 5029. (d) Dissanayake, P.;
Mei, Y. J.; Allen, M. J. ACS Catal. 2011, 1, 1203.
(2) (a) Butler, S. J.; Delbianco, M.; Lamarque, L.; McMahon, B. K.;
Neil, E. R.; Pal, R.; Parker, D.; Walton, J. W.; Zwier, J. M. Dalton Trans.
2015, 44, 4791. (b) Cross, J. P.; Lauz, M.; Badger, P. D.; Petoud, S. J. Am.
Chem. Soc. 2004, 126, 16278. (c) Debroye, E.; Ceulemans, M.; Vander
Elst, L.; Laurent, S.; Muller, R. N.; Parac-Vogt, T. N. Inorg. Chem. 2014,
53, 1257. (d) Eliseeva, S. V.; Song, B.; Vandevyver, C. D. B.; Chauvin, A.
S.; Wacker, J. B.; Bunzli, J. C. G. New J. Chem. 2010, 34, 2915. (e) Lehr,
J.; Beer, P. D.; Faulkner, S.; Davis, J. J. Chem. Commun. 2014, 50, 5678.
(f) Sørensen, T. J.; Kenwright, A. M.; Faulkner, S. Chem. Sci. 2015, 6,
2054. (g) Delbianco, M.; Sadovnikova, V.; Bourrier, E.; Mathis, G.;
Lamarque, L.; Zwier, J. M.; Parker, D. Angew. Chem., Int. Ed. 2014, 53,
10718.
higher static concentration of coumarin increases the back-
transfer probability (i.e., rate). This explanation is supported by
an improved sensitization of Tb by blue-shifted fluorophores and
the associated longer lifetimes of the Tb 5D4 level compared to
that of 4-methylumbelliferone.6b
̈
̈
̈
A comparison of the emission spectra of LnL1 and LnL2
3
3
is broader, extending farther into the red than that of LnL2. This
extension of the fluorescence band was also observed during
titration of L1 by Eu and correlates with the appearance of the 1:3
species. The extra component is probably due to the proximity of
three coumarins that may interact with each other (self-
quenching supports that the chromophores are within
interaction range), or even form exciplexes within LnL1 . The
3
bathochromic shift of the fluorescence tail is unfavorable for Tb
luminescence because it further shortens the donor−acceptor
excited-state energy gap. Therefore, the sensitization efficiency in
TbL2 could be even better than the 2-fold improvement
calculated from EuL31 to EuL2.
(3) Bunzli, J.-C. G. Coord. Chem. Rev. 2015, 293−294, 19.
̈
(4) (a) Aebischer, A.; Gumy, F.; Bunzli, J. C. G. Phys. Chem. Chem.
Phys. 2009, 11, 1346. (b) Chauvin, A. S.; Gumy, F.; Imbert, D.; Bunzli, J.
C. G. Spectrosc. Lett. 2004, 37, 517.
Overall, complexes LnL1 and LnL2 are interesting because of
3
their versatility: sensitization of four Ln ions, concomitant
coumarin fluorescence, and time-resolved predisposition.
Antennae sensitizing more than two Ln ions is still quite
rare.1a,3,15 For some applications (e.g., multiplex detection16),
the ability to sensitize multiple Ln ions is an important
(5) Gassner, A. L.; Duhot, C.; Bunzli, J. C. G.; Chauvin, A. S. Inorg.
Chem. 2008, 47, 7802.
(6) (a) Andres, J.; Chauvin, A. S. Eur. J. Inorg. Chem. 2010, 2010, 2700.
(b) Andres, J.; Chauvin, A. S. Phys. Chem. Chem. Phys. 2013, 15, 15981.
(7) (a) Candelon, N.; Hadade, N. D.; Matache, M.; Canet, J. L.;
Cisnetti, F.; Funeriu, D. P.; Nauton, L.; Gautier, A. Chem. Commun.
2013, 49, 9206. (b) Chamas, Z. E.; Guo, X. M.; Canet, J. L.; Gautier, A.;
Boyer, D.; Mahiou, R. Dalton Trans. 2010, 39, 7091. (c) D’Aleo, A.;
Picot, A.; Baldeck, P. L.; Andraud, C.; Maury, O. Inorg. Chem. 2008, 47,
10269.
parameter. For LnL1 , the “double sensitization” capability
3
below 300 nm allows a comparison of the new antenna to an
internal standard, which is useful for predicting Ln sensitization
by the antenna in another setting, i.e., in DO3A-based systems.
Deviations from strict analogy between LnL1 and LnL2 are
3
(8) Grenthe, I. J. Am. Chem. Soc. 1961, 83, 360.
moderate and are readily explained. The synthesis of the dpa-
based platform is easy and high-yielding and should be adaptable
to a wide range of antennae beyond coumarins. The complexes
are well-suited to applications at physiological pH and are useful
for the screening of antennae for Ln-based biological probes. The
dpa platform, hence, greatly facilitates the development of state-
of-the-art architectures that are difficult to synthesize and purify.
(9) Regueiro-Figueroa, M.; Bensenane, B.; Ruscsak, E.; Esteban-
Gomez, D.; Charbonniere, L. J.; Tircso, G.; Toth, I.; de Blas, A.;
Rodriguez-Blas, T.; Platas-Iglesias, C. Inorg. Chem. 2011, 50, 4125.
(10) (a) Halim, M.; Tremblay, M. S.; Jockusch, S.; Turro, N. J.; Sames,
D. J. Am. Chem. Soc. 2007, 129, 7704. (b) Pershagen, E.; Borbas, K. E.
Angew. Chem., Int. Ed. 2015, 54, 1787. (c) Pershagen, E.; Nordholm, J.;
Borbas, K. E. J. Am. Chem. Soc. 2012, 134, 9832. (d) Szijjarto, C.;
Pershagen, E.; Ilchenko, N. O.; Borbas, K. E. Chem. - Eur. J. 2013, 19,
3099.
(11) Foucault-Collet, A.; Gogick, K. A.; White, K. A.; Villette, S.;
Pallier, A.; Collet, G.; Kieda, C.; Li, T.; Geib, S. J.; Rosi, N. L.; Petoud, S.
Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 17199.
(12) (a) Tropiano, M.; Record, C. J.; Morris, E.; Rai, H. S.; Allain, C.;
Faulkner, S. Organometallics 2012, 31, 5673. (b) Molloy, J. K.; Kotova,
O.; Peacock, R. D.; Gunnlaugsson, T. Org. Biomol. Chem. 2012, 10, 314.
(c) Szijjarto, C.; Pershagen, E.; Borbas, K. E. Dalton Trans. 2012, 41,
7660.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Synthesis procedures, titration curves, and additional
photophysical characterization (PDF)
(13) Bonnet, C. S.; Pellegatti, L.; Buron, F.; Shade, C. M.; Villette, S.;
́
̌ ́
k, V.; Guillaumet, G.; Suzenet, F.; Petoud, S.; Toth, E. Chem.
Kubíce
AUTHOR INFORMATION
Corresponding Author
■
Commun. 2010, 46, 124.
(14) Peters, J. A.; Djanashvili, K.; Geraldes, C. F. G. C.; Platas-iglesias,
C. The Chemistry of Contrast Agents in Medical Magnetic Resonance
Imaging; John Wiley & Sons, Ltd.: New York, 2013; p 251.
(15) (a) Dickins, R. S.; Howard, J. A. K.; Maupin, C. L.; Moloney, J. M.;
Parker, D.; Riehl, J. P.; Siligardi, G.; Williams, J. A. G. Chem. - Eur. J.
Author Contributions
The manuscript was written through contributions of all authors.
All authors have given approval to the final version of the
manuscript.
1999, 5, 1095. (b) Petoud, S.; Cohen, S. M.; Bunzli, J.-C. G.; Raymond,
̈
K. N. J. Am. Chem. Soc. 2003, 125, 13324. (c) Zhang, J.; Badger, P. D.;
Geib, S. J.; Petoud, S. Angew. Chem., Int. Ed. 2005, 44, 2508. (d) Lewis,
D. J.; Glover, P. B.; Solomons, M. C.; Pikramenou, Z. J. Am. Chem. Soc.
2011, 133, 1033. (e) de Bettencourt-Dias, A.; Barber, P. S.; Bauer, S. J.
Am. Chem. Soc. 2012, 134, 6987.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(16) Pershagen, E.; Borbas, K. E. Coord. Chem. Rev. 2014, 273−274, 30.
We thank Vetenskapsradet (Project Grant 2013-4655 to K.E.B.)
̊
and Stiftelsen Olle Engkvist Byggmastare (to K.E.B.) for funding.
̈
C
Inorg. Chem. XXXX, XXX, XXX−XXX