4
Tetrahedron
alkyl phosphonic momochloridate to substitute for the isotope
3. The mass spectrometry fragment pathway of the d5-VX
labeling peptides to synthesize the target nonapeptides. They can
be used as brand new internal standards for the retrospective
analysis after the OPNAs exposure. This method may also find
applications in the synthesis and detection of other
phosphorylated nonapeptides.
nonapeptide and d15-GD nonapetide
The fragmentation of the d5-VX and d15-GD adducted
nonapeptides (Figure 4 and Figure 5) was observed by Precursor-
to-Product Ion Transitions Monitored using Multiple Reaction
Monitoring (MRM). Interestingly, The mass spectrometry
fragment pathways of the d5-VX and d15-GD nonapetide were
identified with the isotopically enriched nonapeptides biomarker
in the similar structure7c. The protonated, peptide-adduct
fragments show losses of the adducted nerve agent, the C-
terminal serine and the C-terminal alanine. It showed the same
fragmentation pattern as the d5-VX-BuChE and d15-GD-BuChE
nonapeptide7c. As is showed in the Figure 6 and 7, the precursor
ion for the chemical 7 (m/z 907.3968) exhibited product ions
derived from a loss of 129 Da that corresponded to the loss of the
d5-VX moiety (m/z 778.3364); further losses of the terminal
serine (m/z 673.2932), and the alanine (m/z 602.2554) residue
were also exhibited. While the precursor ion for the chemical 19
(m/z 973.5225) exhibited product ions derived from a loss of 195
Da that corresponds to the loss of the d15-GD moiety (m/z
778.3371); further losses of the terminal serine (m/z 673.2937),
and the alanine (m/z 602.2562) residue were also exhibited.
Additionally, we find the dehydration impurities for d15-GD
adducted nonapeptides. As is metioned in reference10, the
compound generated via the elimination of OP-serine and
addition of piperidine process was found ( calcd for C38H58N10O13:
863.4258 ).
Acknowledgments
The work was supported by the State Key Laboratory of NBC
Protection for Civilian (grant no. SKLNBC2014-06).
References and notes
1.
(a) John H.; Worek F. Anal. Bioanal. Chem. 2008, 391, 97-116.
(b) Fidder, A.; Hulst, A. G.; Noort, D.; de Ruiter, R.; van der
Schans, M. J.; Benschop, H. P.; Langenberg, J. P. Chem. Res.
Toxicol. 2002, 15, 582−583.
2.
3.
Abney. Carter W.; Knaack. L. S. Jennifer; Ali. I. Ahmed A.;
Johnson. C. Rudolph. Chem. Res. Toxicol. 2013, 26, 775-782.
(a) Morita, H.; Yanagisawa, N.; Nakajima, T.; Shimizu, M.;
Hirabayashi, H.; Okudera, H.; Nohara, M.; Midorikawa, Y.;
Mimura, S. Lancet. 1995, 346, 290−293. (b) Nakajima, T.; Ohta,
S.; Morita, H.; Midorikawa, Y.; Mimura, S.; Yanagisawa, N. J.
Epidemiol. 1998, 8, 33−34. (c) Suzuki, T.; Morita, H.; Ono, K.;
Maekawa, K.; Nagai, R.; Yazaki, Y. Lancet. 1995, 345, 980-981.
(d) Yan Long, Chen Jia, Xu Bin, Guo Lei, Xie Yan, Tang Jijun, ,
Xie Jianwei. J. Chromatogr. A. 2016, 1450, 86-93.
4.
(a) Shih, M. L.; Smith, J. R.; McMonagle, J. D.; Dolzine, T. W.;
Gresham, V. C. Biol. Mass Spectrom. 1991, 20, 717-723. (b)
Black, R. M.; Clarke, R. J.; Read, R. W.; Reid, M. T. J. J.
Chromatogr. A. 1994, 662, 301-321. (c) Tørnes, J. A. Rapid.
Commun. Mass Spectrom. 1996, 10, 878-882. (c) Black, R. M.;
Read, R. W. J. Chromatogr. A. 1997, 759, 79-92. (d) Black, R. M.;
Read, R. W. J. Chromatogr. A. 1998, 794, 233-244. (d) Noort, D.;
Hulst, A. G.; Platenburg, D. H. J. M.; Polhuijs, M.; Benschop, H.
P. Arch. Toxicol. 1998, 72, 671-675.
5.
6.
Riches. J.; Morton. I.; Read. R. W.; Black. R. M. J. Chromatogr.
B. 2005, 816, 251-258.
(a) Bao Yi; Liu Qin; Chen Jia; Lin Ying; Wu Bidong; Xie Jianwei.
J. Chromatogr. A. 2012, 1229, 164-171. (b) Noort. D.; Benschop.
H. P.; Black. R. M. Toxicol. Appl. Pharmacol. 2002, 184, 116–
126.
Figure 6 Structures of the d5-VX adducted nonapeptide and
fragmentation sites denoted with dashed lines.
7.
(a) Knaack. S. Jennifer.; Zhou. Yingtao.; Abney. W. Carter.; Jacob.
T. Justin.; Prezioso. M. Samantha.; Hardy. Katelyn.; Lemire. W.
Sharon.; Thomas. Jerry.; Johnson. C. Rudolph. Anal. Chem. 2012,
84, 9470−9477. (b) Carter. D. Melissa.; Crow. S. Brian.;
Pantazides. G. Brooke.; Watson. M. Caroline.; Thomas. D. Jerry.;
Blake. Thomas A.; Johnson. C. Rudolph. Anal. Chem. 2013, 85,
11106−11111. (c) Sporty. L. S. Jennifer; Lemire. W. Sharon;
Jakubowski. M. Edward; Renner. A. Julie.; Evans. A. Ronald.;
Williams. F. Robert.; Schmidt. G. Jurgen.; van der Schans. J.
Marcel.; Noort Daan.; Johnson. C. Rudolph. Anal. Chem. 2010, 82,
6593–6600.
(a) He, Zheng-Jie.; Wang, You-Ming.; Tang, Chu-Chi.
Phosphorus, Sulfur and Silicon and Related Elements. 1997, 127,
59-66. (b) Bennet, Andrew J.; Kovach, Ildikkom.; Bibbs, Jeffrey
A. J. Am. Chem. Soc. 1989, 111, 6224-6427.
(a) Hudson; Keay. J. Am. Chem. Soc. 1956, 2463-2466. (b) Struck.
J. Am. Chem. Soc. 1966, 9, 231-234.
4. Conclusion
Figure 7 Structures of the d15-GD adducted nonapeptide and
8.
9.
fragmentation sites denoted with dashed lines.
In summary, the synthesis approaches of d5-VX and d15-GD
adducted nonapeptide via solid-phase has been developed. The
MS/MS fracture manners of the d5-VX and d15-GD nonapeptides
are as same as the VX-BuChE nonapeptide7c. So the brand new
compound d5-VX and d15-GD peptide could be used as the
for LC-MS/MS to monitor the OPNAs exposure. Additionally,
the synthesis material d6-Ethanol and d12-3,3-Dimethyl-2-butanol
used in the procedure has the property of the easier availability
than the deuterated amino acid used in the former literature5. The
superiority of the nonapeptides described in the paper is that the
convenience in the synthesis procedure. Although the procedures
involve in many steps, the synthesis for the previously reported
internal standards may also follow it actually except for the d15-
10. Mary MacDonald.; Marion Lanier.; John Cashman. Synlett. 2010,
13, 1951-1954.
11. (a) Arbuzov
B A. Pure Appl. Chem. 1964, 9, 307. (b)
Bhattacharya A K, Thyagarajan G. Chem. Rev. 1981, 81, 415.
12. Roger Adams; E. W. Adams. Org. Synth. 1925, 5, 87.
13. G. A. Hill; E. W. Flosdorf. Org. Synth. 1925, 5, 91.
14. (a) Pelchowicz, Z. J. Chem. Soc. 1961, 238-240. (b) Balthazor, T.
M. J. Chem. Soc. 1980, 45, 530.
15. The target compound d5-VX adducted nonapeptide was
synthesized via the Solid-phase peptide synthesis manually from
C-terminal to N-terminal to enhance the
. The
peptides were synthesized using Fmoc chemistry on a Fmoc-Ser
(tBu)-Wang resin and HBTU/DIPEA activation. Piperidine/DMF
(25%) was used to de-protect the Fmoc group. The rest of the
amino acid residues were induced onto the resin in sequence by
HBTU/DIPEA activation. Kaiser test was used to ensure the
connection with right amino acid residue upon every step. After
pinacolyl
methylphosphonic
monochloridate
synthesis.
Additionally to our knowledge, there is no literature reporting the
synthesis method to these compouds, and we used the deuterated