C O M M U N I C A T I O N S
region, suffered from poor capacity.7 Gratifyingly, high-pressure
studies on UMCM-150 revealed 5.7 wt % at 45 bar (Figure 2).
From the crystallographic density of the fully evacuated material
(0.636 g/cm3), an upper limit on the excess volumetric uptake could
be estimated as 36 g/L. These values are among the highest reported
for a copper-based coordination polymer.
In conclusion, we have demonstrated that a linker with carboxy-
late groups distributed in an unsymmetrical fashion leads to a
coordination polymer possessing rare trinuclear Cu(II) clusters.
Lifting the constraint of symmetry equivalent functional groups
offers entry into a variety of new linker types and represents a
starting point toward a new generation of high performance
coordination polymers.
Acknowledgment. The authors would like to thank Dr. William
W. Porter III for assistance with X-ray data collection and funding
provided by the U.S. Department of Energy (Grant No. DE-FC26-
05NT42447).
Supporting Information Available: Synthetic procedures, crystal-
lographic data, powder X-ray diffraction data, thermogravimetric
analysis, N2 and Ar sorption isotherms, pore size distribution and heat
of adsorption data. This material is available free of charge via the
References
(1) For reviews see: (a) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem.,
Int. Ed. 2004, 43, 2334-2375. (b) Fe´rey, G.; Mellot-Draznieks, C.; Serre,
C.; Millange, F. Acc. Chem. Res. 2005, 38, 217-225. (c) Kaskel, S.,
Schuth, F., Stocker, M., Eds. Microporous Mesoporous Mater. 2004, 73,
1-108. (d) Lever, A. B. P., Ed. Coord. Chem. ReV. 2003, 246, 1-353.
(e) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi,
M.; Kim, J. Nature 2003, 423, 705-714. (f) Batten, S. R.; Robson, R.
Angew. Chem., Int. Ed. 1998, 37, 1460-1494.
Figure 1. (a) View along the a-axis of a 2 × 2 × 1 array of unit cells of
the crystal structure of UMCM-150. C atoms (dark gray), H atoms (white),
O atoms (red), Cu atoms (purple). Guest molecules are omitted for clarity.
(b) View along the c-axis. (c) Detail of a Cu3(O2CR)6 cluster. (d) Hexagonal
bipyramidal cage formed by six molecules of 4 linked by eight Cu clusters.
(e) Trigonal bipyramidal cage formed by six molecules of 4 linked by nine
Cu clusters. (f) Cage formed by twelve molecules of 4 linked by nine Cu
clusters.
(2) (a) Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.;
Pastre´, J. J. Mater. Chem. 2006, 16, 626-636. (b) Kepert, C. J Chem.
Commun. 2006, 695-700.
(3) Contributing to this bias is the fact that the topological analysis commonly
used to describe such extended networks represents the structures as having
vertices with perfect symmetry: Wells, A. F. Three-Dimensional Nets
and Polyhedra; Wiley-Interscience: New York, 1977.
(4) Li, H.; Mohamed Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999,
402, 276-279.
(5) Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams,
I. D. Science 1999, 283, 1148-1150.
(6) Chae, H. K.; Sibe´rio-Pe´rez, D. Y.; Kim, J.; Go, Y.-B.; Eddaoudi, M.;
Matzger, A. J.; O’Keeffe, M.; Yaghi, O. M. Nature 2004, 427, 523-527.
(7) Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. J. Am Chem. Soc. 2006,
128, 3439-3495.
(8) (a) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K.
Nature, 2000, 404, 982-986. (b) Bodwin, J. J.; Pecoraro, V. L. Inorg,
Chem. 2000, 39, 3434-3453. (c) Vaidhyanathan, R.; Bradshaw, D.;
Rebilly, J.-N.; Barrio, J. P.; Gould, J. A.; Berry, N. G.; Rosseinsky, M. J.
Angew. Chem., Int. Ed. 2006, 45, 6495-6499.
(9) Unsymmetrically substituted linkers possessing anionic carboxylates with
neutral heteroatom donors have recently been introduced: (a) Humphrey,
S. M.; Chang, J.-S.; Jhung, S. H.; Yoon, J. W.; Wood, P. T. 118, 6645-
6649; Angew. Chem. Int. Ed. 2007, 46, 272-275. (b) Mahata, P.;
Natajaran, S. Inorg. Chem. 2007, 46, 1250-1258. (c) Jia, J.; Lin, X.;
Wilson, C.; Blake, A. J.; Champness, N. R.; Hubberstey, P.; Walker, G.;
Cussen, E. J.; Schro¨der, M. Chem. Commun. 2007, 840-842.
(10) An apparent exception are the networks derived from monosubstituted
terephthalic acids or substituted biphenyl-4,4′-dicarboxylic acids. These
are, however, isostructural with the terephthalic acid parent compound,
MOF-5, and therefore express apparent higher symmetry in the crystal
due to disorder.
Figure 2. Hydrogen sorption isotherm at 77 K for UMCM-150. Inset:
isotherm from 0 to 1 bar.
(11) X-ray crystal data for UMCM-150: C30H14Cu3O15, hexagonal, space group
P63/mmc (no. 194); a ) b ) 18.3532(11) Å, c ) 40.667(3) Å, V )
11862.9(14) Å3, Z ) 6, T ) 298(2) K, Fcalcd ) 0.663 g/cm3, F(000) )
2358, total reflections ) 44060, independent reflections ) 3899, R1)
0.0907, wR2 ) 0.2162, (R1 ) 0.1402, wR2 ) 0.3205 before SQUEEZE),
GOF ) 0.830, residuals based on [I > 2σ∆I(I)].
repeated cycling. UMCM-150 showed an excess gravimetric H2
uptake of 2.1 wt % at 1 bar (Figure 2), a number that lies in the
upper range of physisorptive materials. Heat of adsorption measure-
ments (Supporting Information) show an affinity of 7.3 kJ/mol at
low coverage which is above MOF-5 and HKUST-1.13 However,
this affinity rapidly drops to a level below that of HKUST-1, but
still above MOF-5. The good uptake at 1 bar can therefore be
ascribed to a combination of good affinity sites and high surface
area. In a previous study we conducted, it was found that HKUST-1
and MOF-74, which show a similarly steep rise in the low-pressure
(12) The motif appears once in the Cambridge Structural Database in a molecule
containing bulky carboxylates (a) Cle´rac, R.; Cotton, F. A.; Dunbar, K.
R.; Hillard, E. A.; Petrukhina, M. A.; Smucker, B. W. C. R. Acad. Sci.
Paris, Chim./Chem. 2001, 4, 315-319. (b) Cage, B.; Cotton, F. A.; Dalal,
N. S.; Hillard, E. A.; Rakvin, B.; Ramsey, C. M. J. Am. Chem. Soc. 2003,
125, 5270-5271.
(13) Rowsell, J. L. C.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 1304-1315.
JA0753952
9
J. AM. CHEM. SOC. VOL. 129, NO. 51, 2007 15741