routes can be activated selectively or collectively by providing
different co-factors of enzymes as desired. Structures and
formation rates of specific metabolite adducts with DNA bases
can be determined using similar films on nanoparticles with
LC-MS/MS product analysis. Future efforts will focus on
testing a wider range of chemicals with known and unknown
metabolism and toxicity using these platforms, to provide
more extensive validation.
The authors gratefully acknowledge financial support from
the National Institute of Environmental Health Sciences
(
NIEHS), NIH (grant No. ES03154).
Fig. 3 LC-MS chromatograms in multiple reaction monitoring
MRM) mode for detection of deoxyguanosine adducts with
(
fragmentation chemistry shown in insets. (A) Formation of
7
S[2-(N -guanyl)ethyl]glutathione with mass transition m/z 601 - 213,
Notes and references
after 5 min reaction using nanoparticles with DNA/human liver
cytosol films and 80 mM EDB, 0.5 mM glutathione in 50 mM MES
buffer (pH 6.0); (B) Formation of N-(deoxyguanosin-8-yl)-2-amino-
fluorene with mass transition m/z 447 - 330 after 5 min reactions
using nanoparticles with DNA/human liver cytosol films (blue) and
DNA/human liver cytosol/microsome films (red) with 100 mM 2-AF,
1
G. A. Doss and T. A. Baillie, Drug Metab. Rev., 2006, 38, 641–649.
2 (a) D. C. Liebler and F. P. Guengerich, Nat. Rev. Drug Discovery,
2005, 4, 410–420; (b) F. P. Guengerich, Chem. Res. Toxicol., 2008,
2
1, 70–83; (c) J. A. Williams, R. Hyland, B. C. Jones, D. A. Smith,
S. Hurst, T. C. Goosen, V. Peterkin, J. R. Koup and S. E. Ball,
Drug Metab. Dispos., 2004, 32, 1201–1208.
3
N. Hariparsad, R. S. Sane, S. C. Strom and P. B. Desai, Toxicol.
in Vitro, 2006, 20, 135–153.
4 E. F. A. Brandon, C. D. Raap, I. Meijerman, J. H. Beijnen and
0.5 mM acetyl coenzyme A, 1.6 mM DTT, and 0.5 mM EDTA in
50 mM MES buffer (pH 6.0). An NADPH regenerating system was
included for the latter reaction to activate cyt P450s.
J. H. M. Schellens, Toxicol. Appl. Pharmacol., 2003, 189, 233–246.
5
6
J. A. Miller and Y.-J. Surh, Adv. Pharmacol. (San Diego), 1994,
7, 1–16.
(a) F. P. Guengerich, J. Biochem. Mol. Biol., 2003, 36,
0–27; (b) F. P. Guengerich, Methods Enzymol., 2005, 401,
342–353.
R. H. Heflich and R. E. Neft, Mutat. Res. Rev. Genet. Toxicol.,
2
mode. For similar reactions with EDB without GSH, this mass
transition was not detected, suggesting the necessity of GSH
for DNA damage. These results confirm the formation of
reactive metabolites of EDB trapped as DNA adduct(s) in the
films, provided that GSH bioconjugation is active, consistent
with results with the ECL arrays.
2
7
8
1
994, 318, 73–174.
(a) E. G. Hvastkovs, M. So, S. Krishnan, B. Bajrami, M. Tarun,
I. Jansson, J. B. Schenkman and J. F. Rusling, Anal. Chem., 2007,
79, 1897–1906; (b) S. Krishnan, E. G. Hvastkovs, B. Bajrami,
I. Jansson, J. B. Schenkman and J. F. Rusling, Chem. Commun.,
Enzymatic activation of 2-AF was confirmed similarly using
nanoparticles with DNA/cytosol/microsome and DNA/cytosol
films. For reactions using DNA/cytosol films in the presence
of AcCoA in MES buffer (pH 6.0), a peak with mass transition
m/z 447 - 330 was obtained using MRM (Fig. 3B, blue). A
reasonable assignment to the structure is N-(deoxyguanosin-
2
007, 1713–1715; (c) S. Krishnan, E. G. Hvastkovs, B. Bajrami,
D. Choudhary, J. B. Schenkman and J. F. Rusling, Anal. Chem.,
2008, 80, 5279–5285; (d) J. F. Rusling, E. G. Hvastkovs, D. O. Hull
and J. B. Schenkman, Chem. Commun., 2008, 141–154.
L. Dennany, R. J. Forster and J. F. Rusling, J. Am. Chem. Soc.,
003, 125, 5213–5218.
9
2
0 L. Zhao, S. Krishnan, Y. Zhang, J. B. Schenkman and
8
-yl)-2-aminofluorene (C8-AF-dGuo) losing a sugar moiety,
1
because C-8 of deoxyguanosine is a preferred target of the
nitrenium ion, although we cannot exclude the minor adduct
J. F. Rusling, Chem. Res. Toxicol., 2009, 22, 341–347.
11 M. So, J. B. Schenkman and J. F. Rusling, Chem. Commun., 2008,
2
-(deoxyguanosin-N -yl)-2-aminofluorene
2
(N -AF-dGuo)
4354–4356.
2 N. Ozawa and F. P. Guengerich, Proc. Natl. Acad. Sci. U. S. A.,
983, 80, 5266–5270.
3
1
1
7
with a similar fragmentation pattern. Reactions utilizing
DNA/cytosol/microsome films, NADPH and AcCoA gave a
much more intense MRM peak with the same mass transition
1
13 Y. C. Li, C. F. Hung, F. T. Yeh, J. P. Lin and J. G. Chung, Food
Chem. Toxicol., 2001, 39, 641–647.
1
1
1
1
4 M. So, E. G. Hvastkovs, B. Bajrami, J. B. Schenkman and
J. F. Rusling, Anal. Chem., 2008, 80, 1192–1200.
5 B. Bajrami, E. G. Hvastkovs, G. Jensen, J. B. Schenkman and
J. F. Rusling, Anal. Chem., 2008, 80, 922–932.
6 H. Huang, A. Jemal, C. David, S. A. Barker, D. H. Swenson
and J. C. Means, Anal. Biochem., 1998, 265, 139–150.
7 (a) A. K. Basu and J. M. Essigmann, Chem. Res. Toxicol., 1988, 1,
(
Fig. 3B, red). This suggests a significantly larger amount of
DNA adduct(s) when both cyt P450s and cytosolic NAT are
activated, consistent with the ECL array observations.
In summary, results above demonstrate for the first time
that ECL arrays featuring DNA, cytosolic and microsomal
enzymes can be used to monitor single and sequential in vitro
metabolic bioactivation. Both conjugation and oxidation
1–18; (b) S. M. Wolf and P. Vouros, Chem. Res. Toxicol., 1994, 7,
82–88.
5
388 | Chem. Commun., 2009, 5386–5388
This journal is ꢀc The Royal Society of Chemistry 2009