Environmental Science and Technology p. 3154 - 3160 (1998)
Update date:2022-08-17
Topics:
Glod, Guy
Brodmann, Urs
Angst, Werner
Holliger, Christof
Schwarzenbach, Rene P.
Since cobalamin is involved in the enzymatic reduction of halogenated ethenes by a variety of anaerobic bacteria and since cobalamin has been suggested as electron transfer mediator for the treatment of halogenated solvents, its reactions with such compounds are presently of great interest. In this paper, it is shown that, in homogeneous aqueous solution containing titanium(III) citrate as the bulk electron donor, superreduced cobalamin reductively dechlorinated cis- and trans-dichloroethene (cis-DCE and trans-DCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride (VC) in pH-dependent reactions to ethene and ethane. Evidence is given that the initial step was the addition of cob(I)alamin to the chlorinated ethenes (CEs) with simultaneous protonation. Only for 1,1-DCE at high pH, a dissociative electron transfer mechanism as suggested for tetrachloroethene (PCE) and trichloroethene (TCE) in earlier work was important. 1,1-DCE reacted about 30 times faster than VC, 600 times faster than trans-DCE, and 3000 times faster than cis-DCE. Acetylene and ethene were found to react at similar rates as 1,1-DCE and VC, respectively. However, at more positive redox potentials, the reductive cleavage of the addition products, particularly of the adducts of acetylene, ethene, and VC with cob(I)alamin, may become very slow, thus preventing the regeneration of cob(I)alamin. The results of this study demonstrate that, at more negative potentials and at low pH, cobalamin is a potent electron transfer mediator for the complete dehalogenation of PCE and TCE without significant accumulation of VC. Since cobalamin is involved in the enzymatic reduction of halogenated ethenes by a variety of anaerobic bacteria and since cobalamin has been suggested as electron transfer mediator for the treatment of halogenated solvents, its reactions with such compounds are presently of great interest. In this paper, it is shown that, in homogeneous aqueous solution containing titanium(III) citrate as the bulk electron donor, superreduced cobalamin reductively dechlorinated cis- and trans-dichloroethene (cis-DCE and trans- DCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride (VC) in pH-dependent reactions to ethene and ethane. Evidence is given that the initial step was the addition of cob(I)alamin to the chlorinated ethenes (CEs) with simultaneous protonation. Only for 1,1-DCE at high pH, a dissociative electron transfer mechanism as suggested for tetrachloroethene (PCE) and trichloroethene (TCE) in earlier work was important 1,1-DCE reacted about 30 times faster than VC, 600 times faster than trans-DCE, and 3000 times faster than cis-DCE. Acetylene and ethene were found to react at similar rates as 1,1-DCE and VC, respectively. However, at more positive redox potentials, the reductive cleavage of the addition products, particularly of the adducts of acetylene, ethene, and VC with cob(I)alamin, may become very slow, thus preventing the regeneration of cob(I)alamin. The results of this study demonstrate that, at more negative potentials and at low pH, cobalamin is a potent electron transfer mediator for the complete dehalogenation of PCE and TCE without significant accumulation of VC.
View MoreBeijing Tianjia Chemical Science & Technology Co.,Ltd
Contact:86-0550-2392698
Address:No.388, Shiliang Road (East),
website:http://www.shochem.com
Contact:021-50800795
Address:No.1043, Halei Rd, Zhangjiang Hi-Tech Park, Shanghai, Postcode 201203, China
Shanghai KFSL Pharmaceutical Technology Co.,Ltd.
Contact:+86-21-39971718
Address:859 jiadingchengliu shanghai
Goldwills Pharmaceuticals Co., Ltd.
Contact:0916-2237889 13991621155
Address:North Suburb of Hanzhong city, Shaanxi Province
XI'AN CHUKANG BIOTECHNOLOGY CO.,LTD
Contact:29-63685658 63685359
Address:Room 3-1202,Building 1,Oriental oasis,East of Xianning Road,Xi'an,Shaanxi 710043 P.R.China
Doi:10.1021/ja01630a097
(1954)Doi:10.1039/c8ra04790a
(2018)Doi:10.1021/bi00877a011
(1965)Doi:10.1139/v60-220
(1960)Doi:10.1021/om000533g
(2001)Doi:10.1016/S0040-4039(01)81767-6
(1981)