D. Li et al. / Journal of Catalysis 290 (2012) 1–12
11
adsorbed acetaldehyde on the surface of the catalyst at reaction
conditions. Measurements at increasing contact times show
that it increases and then disappears, in agreement with the
corresponding reactivity results.
1
750 1580
0
s
60 s
Acknowledgments
300 s
This work was supported by the US Department of Energy, Office
of Basic Energy Sciences, through Grant DE-FG02-963414669, the
National Renewable Energy Laboratory through Grant DE-FG3608
GO18214, and the New Energy Development Organization.
4
500 4000 3500 3000 2500 2000 1500 1000
-
1
Wavenumber / cm
Appendix A. Supplementary material
2 2
Fig. 12. EtOH FTIR over Ni P/SiO in He at 497 K.
of adsorbed CO. This is likely the result of the decomposition of ad-
sorbed acetaldehyde in the presence of H (not He) to a methyl
References
2
species and CO. The hydrogen is likely adsorbed atomic hydrogen,
and the driving force is the formation of methane and strongly
bonded CO. Although not a primary path in the steady-state reac-
[
[
1] T.V. Choudhary, C.B. Phillips, Appl. Catal., A 397 (2011) 1.
2] J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, Chem. Rev. 110
(
2010) 3552.
[3] A. Wawrzetz, B. Peng, A. Hrabar, A. Jentys, A.A. Lemonidou, J.A. Lercher, J. Catal.
69 (2010) 411–420.
[
[
tion, this pathway accounts for the observation of CH
4
and CO in
2
the ethanol TPD spectra (Fig. 7).
4] O. Casanova, S. Iborra, A. Corma, J. Catal. 275 (2010) 236–242.
5] J.J. Bozell, G.R. Petersen, Green Chem. 12 (2010) 539.
The reaction of ethanol on HZSM-5 and Ni P/SiO provides
2 2
information on the reaction pathways on a typical acid catalyst
and a metal catalyst. The acid catalyst, HZSM-5, carries out simple
dehydration to form ethylene. The metal catalyst also forms mainly
ethylene, but through a non-direct pathway in which an adsorbed
ethoxide species is first dehydrogenated to a surface acetaldehyde
species, which undergoes enolization to a vinyl alkoxide and sub-
sequent hydrodeoxygenation. This route is non-direct and occurs
because of the strongly metallic hydrogenation/dehydrogenation
[6] J.C. Serrano-Ruiz, D. Wang, J.A. Dumesic, Green Chem. 12 (2010) 574.
[
[
7] A. Birot, F. Epron, C. Descorme, D. Duprez, Appl. Catal., B 79 (2008) 17–25.
8] J. Rass-Hansen, R. Johansson, M. Moller, C.H. Christensen, Int. J. Hydrogen
Energy 33 (2008) 4547–4554.
[9] E.B. Pereira, P. Ramírez de la Piscina, N. Homs, Bioresource Technol. 102 (2011)
419–3423.
3
[
[
10] A.H. Tullo, Chem. Eng. News 89 (May 16) (2011) 24–25.
11] R.L. Guenard, L.C.F. Torres, B. Kim, S.S. Perry, P. Frantz, S.V. Didziulis, Surf. Sci.
515 (2002) 103–116.
[12] P.A. Clayborne, T.C. Nelson, T.C. De Vore, Appl. Catal., A 257 (2004) 225–233.
13] B.M. Nagaraja, A.H. Padmasri, P. Seetharamulu, K.H.P. Reddy, B.D. Raju, K.S.R.
Rao, J. Mol. Catal. A 278 (2007) 29–37.
14] E.A. El-Katatny, S.A. Halawy, M.A. Mohamed, M.I. Zaki, Appl. Catal., A 1999
(2000) 83–92.
15] N.R.C.F. Machado, V. Calsavara, N.G.C. Astrath, C.K. Matsuda, A.P. Junior, M.L.
Baesso, Fuel 84 (2005) 2064–2070.
[
[
[
2
properties of the Ni P. It is important because the pathway may
also be involved in the reactions of more complex molecules, and
for this reason, its participation should be considered in the study
of their conversion.
[
[
16] V. Calsavara, M.L. Baesso, N.R.C.F. Machado, Fuel 87 (2008) 1628–1636.
17] N. Takezawa, C. Hanamaki, H. Kobayashi, J. Catal. 38 (1975) 101–109.
4
. Conclusions
[18] Y. Matsumura, K. Hashimoto, S. Yoshida, J. Catal. 117 (1989) 135–143.
[
[
19] I. Takahara, M. Saito, M. Inaba, K. Murata, Catal. Lett. 105 (2005) 249–252.
20] X. Zhang, R. Wang, X. Yang, F. Zhang, Micropor. Mesopor. Mater. 116 (2008)
The experiments described in this work lead us to the following
210–215.
conclusions:
[21] J. Schulz, F. Bandermann, Chem. Eng. Technol. 17 (1994) 179–186.
[
[
[
22] C.B. Phillips, R. Datta, Ind. Eng. Chem. Res. 36 (1997) 4466–4475.
23] J.M. Vohs, M.A. Barteau, Surf. Sci. 211 (1989) 590–608.
24] F.W. Chang, W.Y. Kuo, K.C. Lee, Appl. Catal., A 246 (2003) 253–264.
1
. Comparison between the properties of commercial HZSM-5(Si/
Al = 15) and synthesized Ni P/SiO catalysts showed that
HZSM-5 possesses higher surface area and stronger acidic sites
than the Ni P/SiO catalyst. The Ni P/SiO catalyst essentially
[25] M.A. Aramendía, V. Borau, C. Jiménez, J.M. Marinas, A. Porras, F.J. Urbano, J.
Catal. 161 (1996) 829–838.
2
2
[
[
26] Y. Shinohara, T. Nakajima, S. Suzuki, J. Mol. Struct. 460 (1999) 231–244.
27] M.M. Doheim, H.G. El-Shobaky, Colloids Surf. A 204 (2002) 169–174.
2
2
2
2
has more mesopores and moderate acid and basic sites. Infrared
spectroscopy of pyridine reveals that acidity of HZSM-5 and
[28] F.S. Ramos, A.M. Duarte de farias, L.E.P. Borges, J.L. Monteiro, M.A. Fraga, E.F.
Sousa-Aguiar, L.G. Appel, Catal. Today 101 (2005) 39–44.
[
29] M.A. Aramendía, V. Boráu, C. Jiménez, J.M. Marinas, A. Porras, F.J. Urbano,
React. Kinet. Catal. Lett. 65 (1998) 25–31.
Ni
sites, respectively. In the ethanol temperature-programmed
desorption process (EtOH-TPD), the Ni P/SiO catalyst exhibited
2 2
P/SiO catalysts consists mainly of Brønsted and Lewis acid
[30] M.A. Aramendíra, V. Boráu, I.M. García, C. Jiménez, A. Marinas, J.M. Marinas, A.
Porras, F.J. Urbano, Appl. Catal., A 184 (1999) 115–125.
2
2
[
[
31] H.Y. Zhao, D. Li, P. Bui, S.T. Oyama, Appl. Catal., A 391 (2011) 305–310.
32] Y. Shu, Y.-K. Lee, S.T. Oyama, J. Catal. 236 (2005) 112–121.
a higher selectivity toward dehydrogenation products (acetal-
dehyde) than HZSM-5.
. Steady-state reaction results confirm that the Ni P/SiO pro-
2 2
[33] T. Kawai, K.K. Bamdo, Y.-K. Lee, S.T. Oyama, W.-J. Chun, K. Asakura, J. Catal. 241
(2006) 20–24.
2
[
[
34] X. Wang, P. Clark, S.T. Oyama, J. Catal. 208 (2002) 321–331.
35] S.T. Oyama, X. Wang, Y.-K. Lee, K. Bando, F.G. Requejo, J. Catal. 210 (2002) 207–
duces both acetaldehyde and ethylene, and contact time studies
indicate that acetaldehyde is a primary product and ethylene is
a secondary product. The reaction, however, does not consist of
an oxidation reaction followed by a reduction reaction, but
involves sequential reactions on the surface, namely a rake
mechanism. Analysis of the reaction sequence and simulation
of the results give support for this interpretation. Measure-
ments by in situ Fourier transform infrared spectroscopy also
give evidence for the presence of the suggested intermediate,
217.
[36] S.T. Oyama, T. Gott, H. Zhao, Y.-K. Lee, Catal. Today 143 (2009) 94–107.
[
[
37] S.T. Oyama, J. Catal. 216 (2003) 343–352.
38] S.T. Oyama, X. Wang, F. Requejo, T. Sato, Y. Yoshimura, J. Catal. 209 (2002)
1–5.
[39] S.T. Oyama, X. Wang, Y.-K. Lee, W.-J. Chun, J. Catal. 221 (2004) 263–273.
[
[
40] S.T. Oyama, X. Wang, Y. Lee, K. Bando, F.G. Requejo, J. Catal. 210 (2004) 207–
17.
41] S.J. Sawhill, K.A. Layman, D.R. Van Wyk, M.H. Engelhard, C. Wang, M.E. Bussell,
J. Catal. 231 (2005) 300–313.
2