Alacepril Thiolesterase
1315
metabolize alacepril at a similar rate to the endogenous sub-
strate in liver, although it may not be able to compare these
values directly because of the different assay system. Thus,
the alacepril thiolesterase, i.e., LSE, is suggested to take part
in the metabolism of certain drugs with acetylester and
acetylthiolester bonds. It is very beneficial to clarify what
enzymes are involved in metabolism of drugs and prodrugs
with thiolester, carboxylester, and amide linkages for studying
the pharmacokinetics of these drugs. LSE was distributed in a
variety of rat organs and its specific activity was observed to
be high in the brain, testis, kidney, and colon mucosa (34).
Therefore, thiolesterase is expected to be applied to the de-
cancer agent, by carboxylesterase. Biol. Pharm. Bull. 17:662–664
(
1994).
1
1
1
1
5. R. Mentlein and E. Heymann. Hydrolysis of ester- and amide-
type drugs by the purified isoenzymes of nonspecific carboxyles-
terase from rat liver. Biochem. Pharmacol. 33:1243–1248 (1984).
6. H. Yan and J. J. Harding. Inactivation and loss of antigenicity of
esterase by sugar and a steroid. Biochim. Biophys. Acta 1454:183–
190 (1999).
7. M. Hosokawa and T. Satoh. Differences in the induction of car-
boxylesterase isozymes in rat liver microsomes by perfluorinated
fatty acids. Xenobiotica 23:1125–1133 (1993).
8. M. Lotti and A. Moretto. Promotion of organophosphate induced
delayed polyneuropathy by esterase inhibitors. Chem. Biol. In-
teract. 199-120:519–524 (1999).
velopment of acetylester- and acetylthiolester-type prodrugs 19. R. Zech, R. M. Severin, J. M. Chemnitius, and K. Nebendahl.
Paraoxonase polymorphism in rabbits. Chem. Biol. Interact. 119-
targeting organs in which the enzyme is contained specifically,
if the organ distribution of this enzyme in humans is examined
fully.
1
20:283–288 (1999).
2
0. M. Hosokawa, K. Suzuki, D. Takahashi, M. Mori, T. Satoh, and
K. Chiba. Purification, molecular cloning, and functional expres-
sion of dog liver microsomal acyl-CoA hydrolase: a member of
the carboxylesterase multigene family. Arch. Biochem. Biophys.
REFERENCES
3
89:245–253 (2001).
1
. M. A. Ondetti, B. Rubin, and D. W. Cushman. Design of specific 21. L. Luan, T. Sugiyama, S. Takai, Y. Usami, T. Adachi, Y. Katagiri,
inhibitors of angiotensin-converting enzyme: New class of orally
active antihypertensive agents. Science 196:441–444 (1997).
. K. Takeyama, H. Minato, F. Fukuya, S. Kawahara, K. Hosoki,
and K. Hirano. Purification and characterization of pranlukast
hydrolase from rat liver microsomes: the hydrolase is identical to
carboxylesterase pI 6.2. Biol. Pharm. Bull. 20:71–75 (1997).
2
and T. Kadokawa. Antihypertesive activity of alacepril, an orally 22. K. Terashima, S. Takai, Y. Usami, T. Adachi, T. Sugiyama, Y.
active angiotensin converting enzyme inhibitor, in renal hyper-
Katagiri, and K. Hirano. Purification and partial characterization
of an indomethacin hydrolyzing enzyme from pig liver. Pharm.
Res. 13:1327–1335 (1996).
tensive rats and dogs. Arzneim-Forsch/Drug Res. 35:1502–1507
(1985).
3
4
. K. Matsumoto, H. Miyazaki, T. Fujii, K. Yoshida, H. Amejima, 23. M. Sugiura, Y. Iizumi, T. Adashi, Y. Ito, K. Hirano, and S.
and M. Hashimoto. Disposition and metabolism of the novel an-
tihypertensive agent alacepril in rats. Arzneim-Forsch/Drug Res.
Sawaki. Studies on human urinary and renal esterases that mi-
grate to the ␥-globulin region upon cellulose acetate electropho-
resis. Chem. Pharm. Bull. 29:2920–2927 (1981).
36:40-46 (1985).
. P. Corvol, A. Michaud, F. Soubrier, and T. A. Williams. Recent 24. R. L. Prass, F. Isohashi, and M. F. Utter. Purification and char-
advances in knowledge of the structure and function of the an-
acterization of an extramitochondrial acetyl coenzyme A hydro-
lase form rat liver. J. Biol. Chem. 255:5215–5223 (1980).
25. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall.
Protein measurement with the folin phenol reagent. J. Biol.
Chem. 193:265–275 (1951).
giotensin I converting enzyme. J. Hypertens. Suppl. 13:3–10
(1995).
5
6
. F. M. Williams. Clinical significance of esterases in man. Clin.
Pharmacokinet. 10:392–403 (1985).
. M. S. Bogdanffy, R. Sarangapani, J. S. Kimbell, S. R. Frame, and
D. R. Plowchalk. Analysis of vinyl acetate metabolism in rat and
human nasal tissues by an in vitro gas uptake technique. Toxicol.
Sci. 46:235–246 (1998).
2
6. U. K. Laemmli. Cleavage of structural proteins during the assem-
bly of the head of bacteriophage T4. Nature 227:689–695 (1970).
2
7. I. Towbin, T. Staehelin, and J. Gordon. Electrophoretic transfer
of proteins from polyacrylamide gels to nitrocellulose sheets: pro-
cedure and some applications. Proc. Natl. Acad. Sci. USA 76:
7
. S. Guichard, C. Terret, I. Hennebelle, I. Lochon, P. Chevreau, E.
Fretigny, J. Selves, E. Chatelut, R. Bugat, and P. Canal. CPT-11
converting carboxylesterase and topoisomerase activities in tu-
mor and normal colon and liver tissues. Br. J. Cancer 80:364–370
4
350–4354 (1979).
2
2
8. M. Hosokawa, T. Maki, and T. Satoh. Multiplicity and regulation
of hepatic microsomal carboxylesterase in rats. Mol. Pharmacol.
(
1999).
3
1:579–584 (1987).
8
9
. F. Ahmed, V. Vyas, A. Cornfield, S. Goodin, T. S. Ravilumar,
E. H. Rubin, and E. Gupta. In vitro activation of irinotecan to
SN-38 by human liver and intestine. Anticancer Res. 19:2067–2071
9. R. Mentlein, A. Ronai, M. Robbi, E. Heymann, and O. von
Deimling. Genetic identification of rat liver carboxylesterases
isolated in different laboratories. Biochim. Biophys. Acta 913:27–
(1999).
3
8 (1987).
. B. Yan, D. Yang, M. Brady, and A. Parkinson. Rat kidney car-
boxylesterase. Cloning, sequencing, cellular localization, and re-
lationship to rat liver hydrolase. J. Biol. Chem. 269:29688–29696
3
0. E. W. Morgan, B. Yan, D. Greenway, D. R. Petersen, and A.
Perkinson. Purification and characterization of two rat liver mi-
crosomal carboxylesterases (hydrolase A and B). Arch. Biochem.
Biophys. 315:495–512 (1994).
(1994).
1
1
0. T. Yamada, N. Kawaguchi, M. Hosokawa, and T. Satoh. Location
of an isoform of carboxylesterase in rat brain differs from that in
human brain. Brain Res. 674:175–177 (1995).
3
3
1. B. Yan, D. Yang, and Perkinson. Cloning and expression of hy-
drolase C, a member of the rat carboxylesterase family. Arch.
Biochem. Biophys. 317:222–234 (1995).
2. C. Butor, H. H. Higa, and A. Varki. Structural, immunological,
and biosynthetic studies of a sialic acid-specific O-acetylesterase
from rat liver. J. Biol. Chem. 268:10207–10213 (1993).
1. H. Schwer, T. Langmann, R. Daig, A. Becker, C. Aslanidis, and
G. Schmitz. Molecular cloning and characterization of a novel
putative carboxylesterase, present in human intestine and liver.
Biochem. Biophys. Res. Commun. 233:117–120 (1997).
1
2. B. Yan, L. Matoney, and D. Yang. Human carboxylesterase in 33. M. J. Guimaraes, J. F. Bazan, J. Castagnola, S. Diaz, N. G. Cope-
term placenta: enzymatic characterization, molecular cloning and
land, D. J. Gilbert, N. A. Jenkins, A. Varki, and A. Zlotnik.
Molecular cloning and characterization of lysosomal sialic acid
O-acetylesterase. J. Biol. Chem. 271:13697–13705 (1996).
evidence for the existence of multiple forms. Placenta 20:599–607
(1999).
1
3. Y. H. Park and S. S. Lee. Identification and characterization of 34. H. H. Higa, A. Manzi, and A. Varki. O-acetylation and de-O-
capsocin-hydrolyzing enzymes purified from rat liver micro-
somes. Biochem. Mol. Biol. Int. 34:351–360 (1994).
4. T. Satoh, M. Hosokawa, R. Atsumi, W. Suzuki, H. Hakusui, and
E. Nagai. Metabolic activation of CPT-11,7-ethyl-10-[4-(1-
piperidino)-1-piperidine] carbonyloxycamptothecin, a novel anti-
acetylation of sialic acids. Purification, characterization of a gly-
cosylated rat liver esterase specific for 9-O-acetylated sialic acids.
J. Biol. Chem. 264:19435–19442 (1989).
1
35. R. Schauer. Sialic acids: metabolism of O-acetyl groups. Methods
Enzymol. 138:611–626 (1987).