In summary, we have described a new rhodamine-based probe T1, which can give reversible, selective, and sensitive fluorescence
enhancement response to Pd2+ via a 1:1 binding mode in methanol aqueous solutions. High selectivity toward Pd2+ is exhibited and
little cross-sensitivity is observed to other commonly coexistent metal ions.
The molecular design might greatly contribute to the development of more efficient and useful probes based on the rhodamine scaffold.
The value of probes in biological systems is demonstrated by the fluorescence imaging in HepG2 cells. It is anticipated that the probes
may be widely used in the studies on the effects of Pd2+ in biological systems.
Acknowledgments
This work was supported by the National Natural Science Foundation of China (No. 21172178)
References
[1] A. Mokhir, A. Kiel, D.P. Herten, R. Kraemer, Fluorescent sensor for Cu2+ with a tunable emission wavelength, Inorg. Chem. 44 (2005) 5661-5666.
[2]X.H. Yang, S. Li, Z.S. Tang, et al., A simple, water-soluble, Fe3+-selective fluorescent probe and its application in bioimaging, Chin. Chem. Lett. 26 (2015)
129-132.
[3] P.J. Jiang, Z.J. Guo, Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors, Coord. Chem.
Rev. 248 (2004) 205-229.
[4] F. Pina, M.A. Bernardo, E. García-España, Fluorescent chemosensors containing polyamine receptors, Eur. J. Inorg. Chem. 2000 (2000) 2143-2157.
[5]Z.X. Han, B.S. Zhu, T.L. Wu, et al., A fluorescent probe for Hg2+ sensing in solutions and living cells with a wide working pH range, Chin. Chem. Lett. 25
(2014) 73-76.
[6] R. Méallet-Renault, R. Pansu, S. Amigoni-Gerbier, C. Larpent, Metal-chelating nanoparticles as selective fluorescent sensor for Cu2+, Chem. Commun.
(2004) 2344-2345.
[7] T. Bura, R. Ziessel, Design, synthesis and redox properties of a fluorene platform linking two different Bodipy dyes, Tetrahedron Lett. 51 (2010) 2875-2879.
[8] L. Pu, Fluorescence of organic molecules in chiral recognition, Chem. Rev. 104 (2004) 1687-1716.
[9] G.W. Gokel, W.M. Leevy, M.E. Weber, Crown ethers: Sensors for ions and molecular scaffolds for materials and biological models, Chem. Rev. 104 (2004)
2723-2750.
[10] W.Y. Wong, P.D. Harvey, Recent progress on the photonic properties of conjugated organometallic polymers built upon the trans-Bis (para-
ethynylbenzene) bis (phosphine) platinum(II) chromophore and related derivatives, Macromol. Rapid Commun. 31 (2010) 671-713.
[11] L. Prodi, F. Bolletta, M. Montalti, N. Zaccheroni, Luminescent chemosensors for transition metal ions, Coord. Chem. Rev. 205 (2000) 59-83.
[12] V. Amendola, L. Fabbrizzi, F. Foti, et al., Light-emitting molecular devices based on transition metals, Coord. Chem. Rev. 250 (2006) 273-299.
[13] J. Le Bars, U. Specht, J.S. Bradley, D.G. Blackmond, A catalytic probe of the surface of colloidal palladium particles using heck coupling reactions,
Langmuir 15 (1999) 7621-7625.
[14] T. Iwasawa, M. Tokunaga, Y. Obora, Y. Tsuji, Homogeneous palladium catalyst suppressing Pd black formation in air oxidation of alcohols, J. Am. Chem.
Soc. 126 (2004) 6554-6555.
[15] M. Lafrance, K. Fagnou, Palladium-catalyzed benzene arylation: Incorporation of catalytic pivalic acid as a proton shuttle and a key element in catalyst
design, J. Am. Chem. Soc. 128 (2006) 16496-16497.
[16] G. Zeni, R.C. Larock, Synthesis of heterocycles via palladium π-olefin and π-alkyne chemistry, Chem. Rev. 104 (2004) 2285-2310.
[17]C. Liu, S.K. Zhang, Y.X. Zhang, Z.L. Jin, Arylation of pyridine N-oxides via a ligand-free Suzuki reaction in water, Chin. Chem. Lett. 26 (2015) 55-57.
[18] L.F. Tietze, H. Ila, H.P. Bell, Enantioselective palladium-catalyzed transformations, Chem. Rev. 104 (2004) 3453-3516.
[19] K.C. Nicolaou, P.G. Bulger, D. Sarlah, Palladiumkatalysierte kreuzkupplungen in der totalsynthese, Angew. Chem. 117 (2005) 4516-4563.
[20]E. Rajanarendar, G. Mohan, E.K. Rao, M. Srinivas, Palladium-catalyzed Suzuki-Miyaura cross-coupling reaction of organoboronic acids with N-protected
4-iodophenyl alanine linked isoxazoles, Chin. Chem. Lett. 20 (2009) 1-4.
[21] X. Chen, K.M. Engle, D.H. Wang, J.Q. Yu, Palladium(II)-katalysierte C-H-Aktivierung/C-C-Kreuzkupplung: Vielseitigkeit und Anwendbarkeit, Angew.
Chem. 121 (2009) 5196-5217.
[22]M. Amini, M. Bagherzadeh, S. Rostamnia, Efficient imidazolium salts for palladium-catalyzed Mizoroki-Heck and Suzuki-Miyaura cross-coupling
reactions, Chin. Chem. Lett. 24 (2013) 433-436.
[23] V.F. Hodge, M.O. Stallard, Platinum and palladium in roadside dust, Environ. Sci. Technol. 20 (1986) 1058-1060.
[24] T.Z. Liu, S.D. Lee, R.S. Bhatnagar, Toxicity of palladium, Toxicol. Lett. 4 (1979) 469-473.
[25] J.C. Wataha, C.T. Hanks, Biological effects of palladium and risk of using palladium in dental casting alloys, J. Oral Rehabil. 23 (1996) 309-320.
[26] International Programme on Chemical Safety, Palladium: Environmental Health Criteria Series 226, World Health Organization, Geneva, 2002.
[27] K. Van Meel, A. Smekens, M. Behets, P. Kazandjian, R. Van Grieken, Determination of platinum, palladium, and rhodium in automotive catalysts using
high-energy secondary target X-ray fluorescence spectrometry, Anal. Chem. 79 (2007) 6383-6389.
[28] M.A. Taher, Z. Daliri, H. Fazelirad, Simultaneous extraction and preconcentration of copper, silver and palladium with modified alumina and their
determination by electrothermal atomic absorption spectrometry, Chin. Chem. Lett. 25 (2014) 649-654.
[29] A. Kumar, G.K. Rao, A.K. Singh, Organochalcogen ligands and their palladium (II) complexes: Synthesis to catalytic activity for Heck coupling, RSC
Adv. 2 (2012) 12552-12574.
[30] D. Kalný, A.-M. Albrecht-Gary, J. Havel, Highly sensitive method for palladium(II) determination as a porphyrinato complex by capillary zone
electrophoresis, Anal. Chim. Acta 439 (2001) 101-105.
[31] R.J.T. Houk, K.J. Wallace, H.S. Hewage, E.V. Anslyn, A colorimetric chemodosimeter for Pd(II): a method for detecting residual palladium in cross-
coupling reactions, Tetrahedron 64 (2008) 8271-8278.
[32] E. Unterreitmaier, M. Schuster, Fluorometric detection of heavy metals with N-methyl-N-9-(methylanthracene)-N'-benzoylthiourea, Anal. Chim. Acta 309
(1995) 339-344.
[33] K. Kubo, Y. Miyazaki, K. Akutsu, T. Sakurai, Synthesis and emission behavior of double-armed tetrathiacrown carrying two naphthalenes, Heterocycles 51
(1999) 965-968.
[34] B.K. Pal, M.S. Rahman, A nonextractive quenchofluorimetric method for the determination of palladium(II) at µg/L levels using bathophenanthroline,
Mikrochim. Acta 131 (1999) 139-144.
[35] Y.J. Fang, H. Chen, Z.X. Gao, X.Y. Jin, Studies on the determination of palladium(II) by flourescence quenching method with meso-tetra [4-
(carboxymethylenoxy) phenyl] porphyrin, Indian J. Chem. 41A (2002) 521-524.
[36] A. Tamayo, L. Escriche, J. Casabó, B. Covelo, C. Lodeiro, Synthesis, complexation and spectrofluorometric studies of a new NS3 anthracene-containing
macrocyclic ligand, Eur. J. Inorg. Chem. 2006 (2006) 2997-3004.
[37] J.R. Matthews, F. Goldoni, H. Kooijman, et al., Metal coordination and aggregation properties of chiral polythiophenes and polythienylethynylenes,
Macromol. Rapid Commun. 28 (2007) 1809-1815.
[38] L.P. Duan, Y.F. Xu, X.H. Qian, Highly sensitive and selective Pd2+ sensor of naphthalimide derivative based on complexation with alkynes and thio-
heterocyclew, Chem. Commun. (2008) 6339-6341.
Page 4 of 7