Notes and references
1
(a) S. Kishore, J. A. Nelson, J. H. Adair and P. C. Eklund,
J. Alloys Compd., 2005, 389, 234; (b) S. Horinouchi,
Y. Yamanoi, T. Yonezawa, T. Mouri and H. Nishihara, Langmuir,
2
006, 22, 1880; (c) H. Kobayashi, M. Yamauchi, H. Kitagawa,
Y. Kubota, K. Kato and M. Takata, J. Am. Chem. Soc., 2008, 130,
828; (d) Hydrogen in metals II, ed. G. Alefeld, J. Volkl, Springer,
1
Berlin, Heidelberg, 1978.
2
(a) M. Sabo, A. Henschel, H. Frode, E. Klemm and S. Kaskel,
J. Mater. Chem., 2007, 17, 3827; (b) X. Shan, J. H. Payer and
J. S. Wainright, J. Alloys Compd., 2007, 430, 262; (c) A. Anson,
E. Lafuente, E. Urriolabeitia, R. Navarro, A. M. Benito,
W. K. Maser and M. T. Martinez, J. Phys. Chem. B, 2006, 110, 6643.
(a) A. Li, W. Liang and R. Hughes, J. Membr. Sci., 1998, 149, 259;
3
4
(
(
b) Y. M. Lin and M. H. Rei, Sep. Purif. Technol., 2001, 25, 87;
c) E. Kikuchi, Catal. Today, 2000, 56, 97.
(a) T. Skoskiewicz, Phys. Status Solidi A, 1972, 11, K123;
(
(
(
b) T. Skoskiewicz, Phys. Status Solidi B, 1973, 59, 329;
c) B. Stritzker and W. Buckel, Z. Phys., 1972, 257, 1;
d) T. Skoskiewicz, A. W. Szafranski, W. Bujnowski and
B. Baranoski, J. Phys. C: Solid State Phys., 1974, 7, 2670.
(a) F. J. Ibanez and F. P. Zamborini, J. Am. Chem. Soc., 2008, 130,
5
6
6
22; (b) Y. Im, C. Lee, R. P. Vasquez, M. A. Bangar, N. V. Myung,
E. R. Menke, R. M. Penner and M. H. Yun, Small, 2006, 2, 356;
c) C. Langhammer, I. Zori, B. Kasemo and B. M. Clemens, Nano
(
Lett., 2007, 7, 3122.
(a) A. Maeland and T. B. Flanagan, J. Phys. Chem., 1964, 68, 1419;
Fig. 4 TEM images and corresponding SAED patterns of (a) Pd
nanocrystals and (b) b-PdH
c) Pd nanocrystals, (d) PdH
x
nanocrystals. The bottom panels show
nanocrystals after reaction with NaBH
(
1
b) A. J. Maeland and T. R. P. Gibbs, Jr., J. Phys. Chem., 1961, 65,
270; (c) P. C. Aben and W. G. Burgers, Trans. Faraday Soc., 1962,
(
x
4
in TEG, and (e) regenerated Pd nanocrystals after hydrogen release.
Scale bars in (c), (d), and (e) correspond to 20 nm.
58, 1989; (d) T. B. Flanagan and W. A. Oates, Annu. Rev. Mater.
Sci., 1991, 21, 269; (e) J. E. Schirber and B. Morosin, Phys. Rev. B,
1
975, 12, 117.
7
8
S. A. Semiletov, R. V. Baranova, Y. Khodyrev and R. Imamov,
Sov. Phys. Crystallogr. (Engl. Transl.), 1980, 25, 665.
(a) A. Rose, S. Maniguet, R. J. Mathew, C. Slater, J. Yao and
A. E. Russell, Phys. Chem. Chem. Phys., 2003, 5, 3220;
was observed for other nanocrystal systems prepared using
1
similar temperatures.
7
In conclusion, we have demonstrated a facile low-temperature
and ambient-pressure solution-phase process for converting
(b) A. Czerwinski, I. Kiersztyn, M. Grden and J. Czapla,
J. Electroanal. Chem., 1999, 471, 190; (c) M. Bernardini, N. Comisso,
M. Fabrizio, G. Mengoli and A. Randi, J. Electroanal. Chem., 1998,
bulk and nanocrystalline Pd into b-PdH , effectively merging
x
4
53, 221; (d) M. C. F. Oliveira, Electrochem. Commun., 2006, 8, 647.
M. F. Lengke, M. E. Fleet and G. Southam, Langmuir, 2007, 23,
982.
the polyol process for nanocrystal synthesis with metal hydride
hydrogen storage materials. The experiments indicate that
nanocrystalline Pd absorbs and releases hydrogen faster and
at lower temperatures than bulk Pd, and results in the forma-
tion of dispersible metal hydride nanocrystals with general size
and morphology retention relative to the metal nanoparticle
templates. In analogy to similar chemistry in non-hydride
systems, other available shapes of Pd nanoparticles, including
9
8
10 D. W. Murphy, S. M. Zahurak, B. Vyas, M. Thomas,
M. E. Badding and W. C. Fang, Chem. Mater., 1993, 5, 767.
1
1 (a) C. P. Balde, B. P. C. Hereijgers, J. H. Bitter and K. P. de Jong,
J. Am. Chem. Soc., 2008, 130, 6761; (b) K. F. Aguey-Zinsou and
J. R. Ares-Fernandez, Chem. Mater., 2008, 20, 376; (c) L. Zaluski,
A. Zaluska and J. O. Strom-Olsen, J. Alloys Compd., 1997,
2
53–254, 70; (d) V. Berube, G. Radtke, M. Dresselhaus and
1
8
G. Chen, Int. J. Energy Res., 2007, 31, 637.
2 M. Yamauchi, R. Ikeda, H. Kitagawa and M. Takata, J. Phys.
Chem. C, 2008, 112, 3294.
rods, bars, and plates, should provide access to analogous
shapes of PdH nanoparticles that would be useful for
1
x
studying the properties of shape-controlled metal hydride
nanocrystals. This chemistry should also be portable to other
metal and alloy systems, perhaps opening the door to a library
of colloidal metal and intermetallic hydride nanocrystals with
hydrogen absorption and release capabilities.
13 (a) F. Dawood and R. E. Schaak, J. Am. Chem. Soc., 2009, 131,
24; (b) Y. Vasquez, Z. P. Luo and R. E. Schaak, J. Am. Chem.
Soc., 2008, 130, 11866.
4
1
4 (a) F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin and M. Figlarz,
Solid State Ionics, 1989, 32/33, 198; (b) C. Ducamp-Sanguesa,
R. Herrera-Urbina and M. Figlarz, Solid State Ionics, 1993, 63–65,
2
1
5; (c) B. Wiley, Y. Sun and Y. Xia, Acc. Chem. Res., 2007, 40,
067; (d) Y. N. Xia, Y. J. Xiong, B. K. Lim and S. E. Skrabalak,
Angew. Chem., Int. Ed., 2009, 48, 60.
This work was supported by the US Department of
Energy (DE-FG02-08ER46483), the Petroleum Research
Fund (administered by the American Chemical Society), a
DuPont Young Professor Grant, a Beckman Young Investi-
gator Award, a Sloan Research Fellowship, and a Camille
Dreyfus Teacher-Scholar Award. Electron microscopy was
performed at the Electron Microscopy Facility at the
Huck Institutes for the Life Sciences at Penn State. The
authors thank Seung-Hyun Anna Lee for help with GC data
collection.
15 Y. J. Xiong, J. Chen, B. Wiley, Y. Xia, S. Aloni and Y. Yin, J. Am.
Chem. Soc., 2005, 127, 7332.
1
6 Pearson’s Handbook: Crystallographic Data for Intermetallic
Phases, ed. P. Villars, ASM International, Materials Park, OH,
USA, 1997.
1
1
7 A. K. Sra and R. E. Schaak, J. Am. Chem. Soc., 2004, 126, 6667.
8 (a) Y. J. Xiong, J. M. McLellan, J. Y. Chen, Y. D. Yin, Z. H. Li
and Y. N. Xia, J. Am. Chem. Soc., 2005, 127, 17118;
(b) Y. J. Xiong, H. G. Cai, B. J. Wiley, J. G. Wang, M. J. Kim
and Y. N. Xia, J. Am. Chem. Soc., 2007, 129, 3665.
3
028 | Chem. Commun., 2009, 3026–3028
This journal is ꢀc The Royal Society of Chemistry 2009