K64
Journal of The Electrochemical Society, 157 ͑3͒ K59-K65 ͑2010͒
are both justified, depending on the material and the deposition con-
3
.94
.92
.90
.88
.86
ditions. Also, we have shown that NT formation is favored with a
low conductivity plating bath. Moreover, NT formation can be
achieved even if the porous membrane is not functionalized or if an
annular conductive film is not deposited before NT formation. Fi-
nally, we showed that arrays of PtRu alloy NT and NW can be
readily prepared by adjusting the composition of the electroplating
bath. It is expected that electrodeposition, combined with EQCM
measurements of the deposition rates, constitutes a promising tool
for the synthesis of NWs and NTs of most metals, oxides, and alloys
with a wide range of controlled composition and dimensions.
3
3
3
3
0
20
40
60
80 100
XRuCl3 in solution / (%)
D
C
Acknowledgment
B
A
This work was done with the financial support of the National
Science and Engineering Research Council ͑NSERC͒ of Canada and
the Canada Research Chair program.
Pt
Ru
Ti
Institut National de la Recherche Scientifique assisted in meeting the
publication costs of this article.
20
30
40
50
60
70
80
90
100
110
2
ꢀ
References
Figure 9. XRD patterns for deposits presented in Fig. 8. The inset depicts
the variation of the lattice parameter a ͑Å͒ of the Pt fcc phase with respect to
1. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan,
Adv. Mater., 15, 353 ͑2003͒.
2
3
4
5
. H. J. Fan, P. Werner, and M. Zacharias, Small, 2, 700 ͑2006͒.
. Z. Chen, M. Waje, W. Li, and Y. Yan, Angew. Chem., Int. Ed., 46, 4060 ͑2007͒.
. L. S. Van Dyke and C. R. Martin, Langmuir, 6, 1118 ͑1990͒.
. M. E. Spahr, P. Bitterli, R. Nesper, M. Muller, F. Krumeich, and H.-U. Nissen,
Angew. Chem., Int. Ed., 37, 1263 ͑1998͒.
the proportion of RuCl in the solution.
3
equimolar solution of Na PtCl6 and RuCl3 not to exceed 15%,
2
6
7
. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science, 293, 1289 ͑2001͒.
. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and
P. Yang, Science, 292, 1897 ͑2001͒.
which is close to the value found in Fig. 10. Therefore, the compo-
sition of PtRu deposits is consistent with the individually measured
deposition rate of Pt and Ru determined by EQCM. This suggests
that the composition of PtRu deposits can be determined by per-
forming a preliminary evaluation of the deposition rate of Ru and Pt
by EQCM.
8. F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, Science, 293,
227 ͑2001͒.
. H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, Adv. Mater., 14, 158
2002͒.
2
9
͑
10. J. Goldberger, R. R. He, Y. F. Zhang, S. W. Lee, H. Q. Yan, H. J. Choi, and P. D.
Yang, Nature (London), 422, 599 ͑2003͒.
11. M. Yun, N. V. Myung, R. P. Vasquez, C. Lee, E. Menke, and R. M. Penner, Nano
Conclusion
Lett., 4, 419 ͑2004͒.
Pt, Ru, and PtRu NWs and NTs have been achieved by a direct
simple electrodeposition through an AAO membrane. NTs were ob-
1
2. X. Quan, S. Yang, X. Ruan, and H. Zhao, Environ. Sci. Technol., 39, 3770 ͑2005͒.
13. J. H. Yuan, K. Wang, and X. H. Xia, Adv. Funct. Mater., 15, 803 ͑2005͒.
14. Y. G. Guo, J. S. Hu, H. M. Zhang, H. P. Liang, L. J. Wan, and C. L. Bai, Adv.
Mater., 17, 746 ͑2005͒.
z+
tained at high cathodic overpotential, low M initial concentration,
and low concentration of supporting electrolyte. The specific dimen-
sions of these nanostructures ͑internal pore diameter and wall thick-
ness͒ can be controlled by changing the cathodic overpotential and
the initial metallic salt concentration. EQCM study allowed us to
confirm that the growth mechanisms proposed by Fukunaka et al.
1
5. S.-H. Oh, R. R. Finõnes, C. Daraio, L. H. Chen, and S. Jin, Biomaterials, 26, 4938
2005͒.
͑
16. R. Tenne, Nat. Nanotechnol., 1, 103 ͑2006͒.
17. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, Nano Lett., 7, 69 ͑2007͒.
8. Y. Zhang, N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu, and X. Zhang, Chem.
Mater., 14, 3564 ͑2002͒.
9. P. Yang and C. M. Lieber, Science, 273, 1836 ͑1996͒.
20. Z. A. Peng and X. Peng, J. Am. Chem. Soc., 124, 3343 ͑2002͒.
1. Y. Sun, B. Gates, B. Mayers, and Y. Xia, Nano Lett., 2, 165 ͑2002͒.
1
͑
based on the coevolution of a gas during deposition͒, Xiao et al.,
1
and Cho and Lee ͑based on fast-rate, diffusion-limited deposition͒
2
2
2. S. E. Frazier, J. A. Bedford, J. Hower, and M. E. Kenney, Inorg. Chem., 6, 1693
͑1967͒.
2
2
3. C. R. Martin, Science, 266, 1961 ͑1994͒.
4. T. Chowdhury, D. P. Casey, and J. F. Rohan, Electrochem. Commun., 11, 1203
1
00
͑
2009͒.
nanostructured
thin film
25. H. Zhou, W. P. Zhou, R. R. Adzic, and S. S. Wong, J. Phys. Chem. C, 113, 5460
͑2009͒.
6. A. Ponrouch, S. Garbarino, M. P. Bichat, C. Maunders, G. Botton, P. L. Taberna, P.
Simon, and D. Guay, ECS Trans., Submitted.
8
6
4
2
0
0
0
0
0
2
2
7. A. Ponrouch, S. Garbarino, and D. Guay, Electrochem. Commun., 11, 834 ͑2009͒.
28. S. Garbarino, A. Ponrouch, S. Pronovost, and D. Guay, Electrochem. Commun.,
11, 1449 ͑2009͒.
2
9. S. Garbarino, A. Ponrouch, S. Pronovost, J. Gaudet, and D. Guay, Electrochem.
Commun., 11, 1924 ͑2009͒.
30. E. Antolini, T. Lopes, and E. R. Gonzalez, J. Alloys Compd., 461, 253 ͑2008͒.
3
1. Y. Fukunaka, M. Motoyama, Y. Konishi, and R. Ishii, Electrochem. Solid-State
Lett., 9, C62 ͑2006͒.
32. R. Xiao, S. I. Cho, R. Liu, and S. B. Lee, J. Am. Chem. Soc., 19, 4483 ͑2007͒.
33. S. I. Cho and S. B. Lee, Acc. Chem. Res., 41, 699 ͑2008͒.
34. G. Sauerbrey, Z. Phys., 155, 206 ͑1959͒.
3
5. R. A. Young, in The Rietveld Method, R. A. Young, Editor, pp. 1–38, Oxford
University Press, Oxford ͑1993͒.
6. A. C. Larson and R. B. Von Dreele, report no. LAUR 86-748, GSAS–General
Structure Analysis System, Los Alamos National Laboratory ͑2000͒.
7. B. H. Toby, J. Appl. Crystallogr., 34, 210 ͑2001͒.
3
0
20
40
60
80
100
3
3
8. J. J. Jow, H. J. Lee, H. R. Chen, M. S. Wu, and T. Y. Wei, Electrochim. Acta, 52,
XRuCl3 in solution / (%)
2
626 ͑2007͒.
3
9. P. J. Ferreira, G. J. La O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, and
H. A. Gasteiger, J. Electrochem. Soc., 152, A2256 ͑2005͒.
Figure 10. ͑Color online͒ Atomic concentration of Ru for deposits presented
in Fig. 8 and for equivalent PtRu films prepared without an AAO membrane.
40. L. Philippe and J. Michler, Small, 4, 904 ͑2008͒.