Table 1 MNPs prepared by different Cn-PVP and synthetic strategy in various solvents
Entry
Metal
Precursor
Stabilizer
Solvent
Prep. method
Size/nm
1
2
3
4
5
6
Ru
Pd
Pt
Ag
Co
Co
RuCl3
PdCl2
H2PtCl6
AgOAc
Co2(CO)8
Co2(CO)8
C2-PVP
C4-PVP
C4-PVP
C6-PVP
C8-PVP
C8-PVP
EtOH–H2O
EtOH
EtOH
Dioxane
Toluene
Squalane
NaBH4 as reductant
EtOH as reductant
NaBH4 as reductant
LiAlH4 as reductant
Thermal decomp.
Thermal decomp.
B5–7a
5.0 ꢂ 1.2
2.3 ꢂ 0.3
4.0 ꢂ 1.1
15–30a
15–30a
a
MNPs were found to stick to each other and as a result the size distribution was not determined.
alkyl chain not only endows MNPs with adjustable solubility
but also expands the range of possible reagents (both reduc-
tants and metal precursors) and as a result the scope of PVP
based MNPs formation and catalysis.
1 (a) G. Schmid, Nanoparticles: From Theory to Application, Wiley,
New York, 2004; (b) M. C. Daniel and D. Astruc, Chem. Rev., 2004,
104, 293; (c) T. H. Lee, J. I. Gonzalez, J. Zheng and R. M. Dickson,
Acc. Chem. Res., 2005, 38, 534; (d) N. L. Rosi and C. A. Mirkin,
Chem. Rev., 2005, 105, 1547; (e) D. Astruc, Nanoparticles and
Catalysis, VCH, Weinheim, 2008; (f) A. J. Baca, J. H. Ahn,
Y. Sun, M. A. Meitl, E. Menard, H. S. Kim, W. M. Choi,
D. H. Kim, Y. Huang and J. A. Rogers, Angew. Chem., Int. Ed.,
2008, 47, 5524.
Recently, several Fischer–Tropsch (F–T) processes based on
soluble Ru and Co MNPs have been established.9 However,
these researches were conducted in water and ILs, which are
not the conventional solvents applied in the slurry reactor for
F–T reaction. A quasi-homogeneous process that uses high
boiling point alkanes as solvent, as currently practised in
industry, has not yet been developed. With this in mind, we
tested the F–T synthesis activity over Co MNPs derived from
the thermal decomposition of Co2(CO)8 in squalane and
stabilized by C8-PVP. Co-C8-PVP exhibited F–T reaction
activity at temperatures higher than 170 1C with the TOF
value increasing with temperature. The reaction of syngas
(20 atm, H2–CO 2 : 1) over the Co-C8-PVP at 200 1C for
12 h gave an average TOF value of 1.3, of the same order of
magnitude as the value observed for supported cobalt catalysts
and higher than that of Co MNPs in ILs (see ESI,w Table S1).
However, the MNPs were not stable and after reaction, Co
MNPs were partially precipitated and Co black was found in
the autoclave. Nevertheless, this is the first example of a F–T
process catalyzed by soluble Co MNPs in paraffin solvents,
demonstrating that MNPs stabilized by the hydrophobic
C8-PVP can be applied in nonpolar solvents for catalysis.
In summary, we have developed a general strategy for the
preparation of solubility adjustable MNPs by selecting appro-
priate Cn-PVP as the stabilizer. We believe the current
work should broaden the applications of MNPs protected by
PVP-like polymers. For example, they can be, in principle,
applied as catalysts for novel biphasic reactions. Moreover,
the modified PVP family for MNPs preparation demonstrates
that there is great potential to improve quasi-homogeneous
catalysis by tailoring the stabilizers. Further examples involving
steric, electronic modifications and bi-functional stabilizers are
currently under development in this laboratory.
2 For examples see: (a) A. Roucoux, J. Schulz and H. Patin, Chem.
Rev., 2002, 102, 3757; (b) J. A. Widegren and R. G. Finke, J. Mol.
Catal. A: Chem., 2003, 191, 187; (c) J. Grunes, A. Zhu and
G. A. Somorjai, Chem. Commun., 2003, 2257; (d) B. L. Cushing,
V. L. Kolesnichenko and C. J. O’Connor, Chem. Rev., 2004, 104,
3893; (e) C. Burda, X. B. Chen, R. Narayanan and M. A. El-Sayed,
Chem. Rev., 2005, 105, 1025; (f) D. Astruc, F. Lu and
J. R. Aranzaes, Angew. Chem., Int. Ed., 2005, 44, 7852;
(g) T. J. Geldbach, D. B. Zhao, N. C. Castillo, G. Laurenczy,
B. Weyershausen and P. J. Dyson, J. Am. Chem. Soc., 2006, 128,
9773; (h) D. B. Zhao, Z. F. Fei, W. H. Ang and P. J. Dyson, Small,
2006, 2, 879; (i) P. Migowski and J. Dupont, Chem.–Eur. J., 2007,
13, 32; (j) R. Narayanan and M. A. El-Sayed, Top. Catal., 2008, 47,
15; (k) G. A. Somorjai and J. Y. Park, Top. Catal., 2008, 49, 126.
3 (a) S. Minko, S. Patil, V. Datsyuk, F. Simon, K. J. Eichhorn,
M. Motornov, D. Usov, I. Tokarev and M. Stamm, Langmuir, 2002,
18, 289; (b) B. L. V. Prasad, S. K. Arumugarn, T. Bala and
M. Sastry, Langmuir, 2005, 21, 822; (c) S. C. Zimmerman,
J. R. Quinn, E. Burakowska and R. Haag, Angew. Chem., Int.
Ed., 2007, 46, 8164; (d) J. Keilitz, M. R. Radowski, J. D. Marty,
R. Haag, F. Gauffre and C. Mingotaud, Chem. Mater., 2008, 20,
2423; (e) A. M. Smith and S. Nie, Angew. Chem., Int. Ed., 2008, 47,
9916.
4 For examples, see: (a) N. Yan, C. Zhao, C. Luo, P. J. Dyson,
H. C. Liu and Y. Kou, J. Am. Chem. Soc., 2006, 128, 8714;
(b) C. X. Mao, H. Z. Wang, X. D. Mu and Y. Kou, J. Catal.,
2007, 250, 25.
5 For examples, see: (a) X. Yang, N. Yan, Z. F. Fei, R. M. Crespo-
Quesada, G. Laurenczy, L. Kiwi-Minsker, Y. Kou, Y. D. Li and
P. J. Dyson, Inorg. Chem., 2008, 47, 7444; (b) L. He, H. Liu,
C. X. Xiao and Y. Kou, Green Chem., 2008, 10, 619.
6 (a) X. D. Mu, J. Q. Meng, Z. C. Li and Y. Kou, J. Am. Chem. Soc.,
2005, 127, 9694; (b) C. Zhao, H. Z. Wang, N. Yan, C. X.
Xiao, X. D. Mu, P. J. Dyson and Y. Kou, J. Catal., 2007, 250,
33.
7 (a) L. A. White, S. Jonson, C. E. Hoyle and L. J. Mathias, Polymer,
1999, 40, 6597; (b) L. A. White, C. E. Hoyle, S. Jonsson and
L. J. Mathias, J. Polym. Sci., Part A: Polym. Chem., 2002, 40, 694.
8 M. R. Mucalo and R. P. Cooney, Chem. Mater., 1991, 3, 1081.
9 (a) C. X. Xiao, Z. P. Cai, T. Wang, Y. Kou and N. Yan, Angew.
Chem., Int. Ed., 2008, 47, 746; (b) D. O. Silva, J. D. Scholten,
M. A. Gelesky, S. R. Teixeira, A. C. B. Dos Santos, E. F. Souza-
Aguiar and J. Dupont, ChemSusChem, 2008, 1, 291; (c) M. Scariot,
D. O. Silva, J. D. Scholten, G. Machado, S. R. Teixeira,
M. A. Novak, G. Ebeling and J. Dupont, Angew. Chem., Int. Ed.,
2008, 47, 9075.
This work was supported by the National Science Founda-
tion of China (Projects 20773005 and 20533010). The authors
thank Mr Ryan Dykeman for useful discussions.
Notes and references
z All organic synthesis was handled with standard Schlenk techniques.
ꢁc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 4423–4425 | 4425